設(shè)u,v∈R,且|u|≤,v>0,則(uv)2+()2的最小值為(  )
A.4B.2C.8D.2
C
考慮式子的幾何意義,轉(zhuǎn)化為求圓x2+y2=2上的點與雙曲線xy=9上的點的距離的最小值 
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)點,距離之差為,到軸,軸距離之比為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,試討論當的值變化時,方程表示的曲線形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知⊙Q:(x-1)2+y2=16,動⊙M過定點P(-1,0)且與⊙Q相切,則M點的軌跡方程是:                    。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知點M在X軸上,點N在Y軸上,且,點P為線段MN的中點。        
(1) 求點P的軌跡方程。
(2)若直線與上述軌跡交于A.B兩點,且,求:的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的右焦點重合,則的值為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點,,且,且為常數(shù)).過弦AB的中點M作平行于軸的直線交拋物線于點D,連結(jié)AD、   BD得到.
(1)求證:;
(2)求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


A.B.0C.D.不存在滿足上述條件的a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 設(shè)曲線C:的離心率為,右準線與兩漸近線交于P,Q兩點,其右焦點為F,且△PQF為等邊三角形。
(1)求雙曲線C的離心率;
(2)若雙曲線C被直線截得弦長為,求雙曲線方程;
(3)設(shè)雙曲線C經(jīng)過,以F為左焦點,為左準線的橢圓的短軸端點為B,求BF 中點的軌跡N方程。

查看答案和解析>>

同步練習冊答案