A. | cosα | B. | sinα | C. | 1 | D. | $\frac{1}{2}$ |
分析 先考慮分母化簡,利用降次公式,正切的兩角和與差公式打開,整理,可得答案.
解答 解:先考慮分母:$4{sin^2}(\frac{π}{4}+α)tan(\frac{π}{4}-α)=4\frac{{1-cos(\frac{π}{2}+2α)}}{2}•\frac{1-tanα}{1+tanα}$
=$2(1+sin2α)•\frac{cosα-sinα}{cosα+sinα}=2({cos^2}α-{sin^2}α)=2cos2α$,
故得$\frac{cos2α}{{4{{sin}^2}(\frac{π}{4}+α)tan(\frac{π}{4}-α)}}$=$\frac{cos2α}{2cos2α}=\frac{1}{2}$
故選D
點評 本題主要考察了同角三角函數(shù)關系式和萬能公式的應用,兩角和與差公式.屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 分層抽樣 | B. | 抽簽法 | C. | 隨機數(shù)表法 | D. | 系統(tǒng)抽樣法 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{3\sqrt{3}}}{2}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(-2)>f(0)>f(1) | B. | f(-2)>f(1)>f(0) | C. | f(1)>f(0)>f(-2) | D. | f(1)>f(-2)>f(0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[-\frac{1}{2},\frac{1}{2}]$ | B. | $[-\sqrt{2},\sqrt{2}]$ | C. | $(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$ | D. | [-1,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com