10.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有委米依垣內(nèi)角,下周八尺,高五尺,問:積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長為9尺,米堆的高為5尺,米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米有( 。
A.14斛B.28斛C.36斛D.66斛

分析 由弧長公式求出圓錐底面半徑,根據(jù)圓錐的體積公式計(jì)算出對(duì)應(yīng)的體積,除以1.62得答案.

解答 解:設(shè)圓錐的底面半徑為r,則$\frac{π}{2}$r=9,
解得r=$\frac{18}{π}$,
故米堆的體積為$\frac{1}{4}$×$\frac{1}{3}$×π×($\frac{18}{π}$)2×5≈$\frac{405}{9}$,
∵1斛米的體積約為1.62立方,
∴$\frac{405}{9}$÷1.62≈28,
故選:B.

點(diǎn)評(píng) 本題考查圓錐體積的求法,考查弧長公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)y=f(x)與y=3-x的圖象關(guān)于直線y=x對(duì)稱,則函數(shù)y=f(4x-x2)的增區(qū)間為( 。
A.(2,4)B.(0,2)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}為等比數(shù)列,且a3a13+2a82=5π,則cos(a5a11)的值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函數(shù)f(x)=$\frac{1}{2}sin({2x+φ})$的圖象向左平移$\frac{π}{6}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象關(guān)于x=$\frac{π}{3}$對(duì)稱,則|φ|的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A={1,3,9,27,81},B={y|y=log3x,x∈A},則A∩B=( 。
A.{1,3}B.{3,27,81}C.{1,3,9}D.{9,27}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知△ABC中,sinA+2sinBcosC=0,則tanA的最大值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,∠DAB=90°,PA⊥平面ABCD,且PA=CD=AD=$\frac{1}{2}$AB,M為PB的中點(diǎn).
(1)證明:平面PAD⊥平面PCD;
(2)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列{an}中,${a_n}+{a_{n+2}}=2{a_{n+1}}({n∈{N^*}}),{a_5}=5$,則有(  )
A.a4•a6=25B.a4•a6≤25C.a4•a6>25D.a4•a6<25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知拋物線Γ:y2=4x,點(diǎn)N(a,0),O為坐標(biāo)原點(diǎn),若在拋物線Γ上存在一點(diǎn)M,使得$\overrightarrow{OM}$•$\overrightarrow{NM}$=0,則實(shí)數(shù)a的取值范圍是a>4.

查看答案和解析>>

同步練習(xí)冊(cè)答案