A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,求得|φ|的最小值.
解答 解:將函數(shù)f(x)=$\frac{1}{2}sin({2x+φ})$的圖象向左平移$\frac{π}{6}$個單位,可得y=$\frac{1}{2}$sin[2(x+$\frac{π}{6}$)+φ]=$\frac{1}{2}$sin(2x+$\frac{π}{3}$+φ)的圖象;
再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),可得y=$\frac{1}{2}$sin(x+$\frac{π}{3}$+φ)的圖象.
根據(jù)所得圖象關(guān)于x=$\frac{π}{3}$對稱,可得$\frac{2π}{3}$+φ=kπ+$\frac{π}{2}$,即 φ=kπ-$\frac{π}{6}$,
故|φ|的最小值為$\frac{π}{6}$,
故選:B.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{2}-\frac{1}{e}$ | B. | $-\frac{3}{2}-\frac{2}{e}$ | C. | $-\frac{3}{4}-\frac{1}{2e}$ | D. | $-1-\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 14斛 | B. | 28斛 | C. | 36斛 | D. | 66斛 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16}{3}$+8π | B. | $\frac{32}{3}$+8π | C. | 16+8π | D. | $\frac{16}{3}$+16π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com