【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)上的動(dòng)點(diǎn)到點(diǎn)的距離與到直線(xiàn)的距離相等.
(1)求曲線(xiàn)的軌跡方程;
(2)過(guò)點(diǎn)分別作射線(xiàn)、交曲線(xiàn)于不同的兩點(diǎn)、,且以為直徑的圓經(jīng)過(guò)點(diǎn).試探究直線(xiàn)是否過(guò)定點(diǎn)?如果是,請(qǐng)求出該定點(diǎn);如果不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)過(guò)定點(diǎn).
【解析】
(1)根據(jù)題意得到,化簡(jiǎn)求得曲線(xiàn)的軌跡方程.
(2)設(shè)直線(xiàn)的方程為,聯(lián)立直線(xiàn)的的方程和曲線(xiàn)的方程,寫(xiě)出韋達(dá)定理,由于以為直徑的圓過(guò)點(diǎn),所以,利用向量數(shù)量積的坐標(biāo)運(yùn)算進(jìn)行化簡(jiǎn),由此求得的關(guān)系式,進(jìn)而求得直線(xiàn)所過(guò)定點(diǎn).
(1)設(shè),依題意,即,兩邊平方并化簡(jiǎn)得.所以曲線(xiàn)的軌跡方程為
(2)直線(xiàn)經(jīng)過(guò)定點(diǎn).理由如下:
依題意的斜率不為零,所以設(shè)直線(xiàn)的方程為, 由消去得,.設(shè),則.由于以為直徑的圓過(guò)點(diǎn),所以,即,化簡(jiǎn)得,由于,所以,所以依題意,直線(xiàn)不經(jīng)過(guò),所以,所以,將其代入得,即直線(xiàn)過(guò)定點(diǎn).
綜上所述,直線(xiàn)經(jīng)過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】5張獎(jiǎng)券中有2張是中獎(jiǎng)的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:
(1)甲中獎(jiǎng)的概率;
(2)甲、乙都中獎(jiǎng)的概率;
(3)只有乙中獎(jiǎng)的概率;
(4)乙中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)為宣傳本市,隨機(jī)對(duì)本市內(nèi)歲的人群抽取了人,回答問(wèn)題“本市內(nèi)著名旅游景點(diǎn)有哪些” ,統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出的值;
(2)根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點(diǎn)后兩位)和平均數(shù);
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機(jī)抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù),部分與的對(duì)應(yīng)關(guān)系如下表:
-2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | |
0 | 2 | 3 | 2 | 0 | -1 | 0 | 2 |
(1)求;
(2)數(shù)列滿(mǎn)足,且對(duì)任意,點(diǎn)都在函數(shù)的圖像上,求;
(3)若,其中,求此函數(shù)的解析式,并求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線(xiàn)C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程
(2)設(shè)M,N為C1上兩點(diǎn),若OM⊥ON,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶(hù)居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶(hù)中,用分層抽樣的方法抽取戶(hù)居民,則月平均用電量在的用戶(hù)中應(yīng)抽取多少戶(hù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線(xiàn)l,交曲線(xiàn)C于不同于N的兩點(diǎn)A,B,直線(xiàn)NA,NB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)C的普通方程與直線(xiàn)l的直角坐標(biāo)方程;
(2)若Q是曲線(xiàn)C上的動(dòng)點(diǎn),M為線(xiàn)段PQ的中點(diǎn),求點(diǎn)M到直線(xiàn)l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)定點(diǎn),圓心在拋物線(xiàn)上,、為圓與軸的交點(diǎn).
(1)求圓半徑的最小值;
(2)當(dāng)圓心在拋物線(xiàn)上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論;
(3)當(dāng)圓心在拋物線(xiàn)上運(yùn)動(dòng)時(shí),記,,求的最大值,并求此時(shí)圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com