8.已知函數(shù)f(x)滿足2f(x)+f($\frac{1}{x}$)=3x,求f(x)的解析式.

分析 用$\frac{1}{x}$代換x可得出2f($\frac{1}{x}$)+f(x)=$\frac{3}{x}$,解方程組得出f(x).

解答 解:2f(x)+f($\frac{1}{x}$)=3x,
∴2f($\frac{1}{x}$)+f(x)=$\frac{3}{x}$,
解方程組得f(x)=2x-$\frac{1}{x}$.

點(diǎn)評(píng) 考查了抽象函數(shù)表達(dá)式的求解方法.注意換元思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知1,a,b,c,5五個(gè)數(shù)成等比數(shù)列,則b的值為( 。
A.3B.$\sqrt{5}$C.±$\sqrt{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x+y≥0\\ x+y≤1\\ x-y≤1\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的取值范圍是[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知甲箱中裝有3個(gè)紅球、3個(gè)黑球,乙箱中裝有2個(gè)紅球、2個(gè)黑球,這些球除顏色外完全相同.某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),設(shè)獎(jiǎng)規(guī)則如下:每次分別從以上兩個(gè)箱中各隨機(jī)摸出2個(gè)球,共4個(gè)球.若摸出4個(gè)球都是紅球,則獲得一等獎(jiǎng);摸出的球中有3個(gè)紅球,則獲得二等獎(jiǎng);摸出的球中有2個(gè)紅球,則獲得三等獎(jiǎng);其他情況不獲獎(jiǎng).每次摸球結(jié)束后將球放回原箱中.
(1)求在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;
(2)若連續(xù)摸獎(jiǎng)2次,求獲獎(jiǎng)次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)y=f(x)的定義域?yàn)閇1,3],那么函數(shù)y=f(3x)的定義域?yàn)閇0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.己知z為方程z4+z3+z2+z+1=0的根,則z2015=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.有首項(xiàng)為1、公差為5的等差數(shù)列,與首項(xiàng)為3、公差為7的等差數(shù)列,其中開始出現(xiàn)相同的項(xiàng)是31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2-2x+2.
(Ⅰ)若關(guān)于x的不等式f(x)<mx的解集為(1,2),求實(shí)數(shù)m的值;
(Ⅱ)設(shè)函數(shù)g(x)=$\frac{f(x)}{x}$(x>0),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0(a<0); q:實(shí)數(shù)x滿足x2+2x-8>0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案