【題目】如圖,已知拋物線x22pyp0)的焦點(diǎn)為F01),過F的兩條動(dòng)直線AB,CD與拋物線交出A、B、C、D四點(diǎn),直線AB,CD的斜率存在且分別是k1k10),k2

(Ⅰ)若直線BD過點(diǎn)(0,3),求直線ACy軸的交點(diǎn)坐標(biāo)

(Ⅱ)若k1k22,求四邊形ACBD面積的最小值.

【答案】(Ⅰ)(0);(Ⅱ)32

【解析】

(Ⅰ)拋物線方程為,設(shè),,,,,直線代入拋物線方程,當(dāng)時(shí),得,,當(dāng)時(shí),得,進(jìn)而可得值為,寫出直線AC方程,令,進(jìn)而得出結(jié)論;

(Ⅱ)設(shè),,,直線l的方程是,聯(lián)立拋物線方程,由韋達(dá)定理可得,,再求出點(diǎn)CAB的距離d1,點(diǎn)DAB的距離d2,,化簡得,設(shè),求導(dǎo),分析單調(diào)性,進(jìn)而得出

(Ⅰ)由題意可得拋物線方程為,

設(shè)直線代入拋物線方程得

設(shè),,,,

當(dāng)時(shí),得,,

當(dāng)時(shí),,

所以

直線AC方程是,

故直線ACy軸交點(diǎn)坐標(biāo)是;

(Ⅱ)設(shè)直線l的方程是,代入,

設(shè),,,

,,

點(diǎn)CAB的距離,

點(diǎn)DAB的距離

,

設(shè),

,

所以上單調(diào)遞減,在上單調(diào)遞增,

所以在內(nèi)最小值

故當(dāng),時(shí),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的大;

(Ⅲ)當(dāng)的長為何值時(shí),二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列,.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時(shí),表示收入完全平等,勞倫茨曲線為折線時(shí),表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱為基尼系數(shù).對(duì)于下列說法:

越小,則國民分配越公平;

②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有

③若某國家某年的勞倫茨曲線近似為,則

④若某國家某年的勞倫茨曲線近似為,則

其中不正確的是:(

A.①④B.②③C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線為原點(diǎn))與橢圓交于點(diǎn),滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省開展精準(zhǔn)脫貧,攜手同行的主題活動(dòng),某貧困縣統(tǒng)計(jì)了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計(jì)結(jié)果見下表.

走訪數(shù)量區(qū)間

頻數(shù)

頻率

b

10

38

a

0.27

9

總計(jì)

100

1.00

1)求ab的值;

2)根據(jù)表中數(shù)據(jù),估計(jì)這100名基層干部走訪數(shù)量的中位數(shù)(精確到個(gè)位);

3)如果把走訪貧困戶不少于35戶視為工作出色,按照分層抽樣,從工作出色的基層干部中抽取4人,再從這4人中隨機(jī)抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)遞減區(qū)間;

2)若,對(duì)于給定實(shí)數(shù),總存在實(shí)數(shù),使得關(guān)于的方程恰有3個(gè)不同的實(shí)數(shù)根.

i)求實(shí)數(shù)的取值范圍;

ii)記,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(a)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(b)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元,該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案(a)的概率為,選擇方案(b)的概率為.若甲、乙、丙三名騎手分別到該快餐連鎖店應(yīng)聘,三人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案(a)的概率;

(3)若僅從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過的直線y軸交于點(diǎn)M,滿足O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.

1)求橢圓C的方程;

2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案