11.已知復(fù)數(shù)z=1+i,若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求實(shí)數(shù)a,b的值.

分析 把z=1+i代入$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)左邊,再由復(fù)數(shù)相等的條件列式求得a,b的值.

解答 解:∵z=1+i,
∴$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=\frac{{{{({1+i})}^2}+a({1+i})+b}}{{{{({1+i})}^2}-({1+i})+1}}=\frac{{({a+b})+({a+2})i}}{i}=({a+2})-({a+b})i=1-i$,
根據(jù)復(fù)數(shù)相等的定義,得$\left\{\begin{array}{l}{a+2=1}\\{-(a+b)=-1}\end{array}\right.$,解得:a=-1,b=2.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=2ex-ax2+(a-2e)x有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(e,+∞)B.(0,e)C.[1,e)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow{a}$=(4,5cosα),$\overrightarrow$=(3,-4tanα)α∈(0,$\frac{π}{2}$),$\overrightarrow{a}$⊥$\overrightarrow$.
(1)求$|{\overrightarrow a-\overrightarrow b}|$;
(2)求$sin(\frac{3π}{2}+2α)+cos(2α-π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.化簡(jiǎn)sin(x+y)sinx+cos(x+y)cosx等于cosy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.平面內(nèi)給定三個(gè)向量$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(-1,y),$\overrightarrow{c}$=(x,5),
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求實(shí)數(shù)y;       
(2)若$\overrightarrow{a}$∥$\overrightarrow{c}$,求實(shí)數(shù)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.p:f(x)=m+2x為定義在[-1,2]上的“局部奇函數(shù)”;q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點(diǎn);若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=aex(x+2),g(x)=x2+bx+2,已知它們?cè)趚=0處有相同的切線.
(1)求函數(shù)f(x),g(x)的解析式;
(2)求函數(shù)f(x)在[t,t+1](t>-4)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知x和y之間的一組數(shù)據(jù):
x1357
y2345
則y與x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必過點(diǎn)(4,3.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|(2x-5)(x+3)>0},B={1,2,3,4,5},則(∁RA)∩B=( 。
A.{1,2,3}B.{2,3}C.{1,2}D.{1}

查看答案和解析>>

同步練習(xí)冊(cè)答案