已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)若對于任意的,都存在,使得,求的取值范圍
(1) 的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,當(dāng)時(shí),取極小值,當(dāng)時(shí),取極大值, (2)
解析試題分析:(1)求函數(shù)單調(diào)區(qū)間及極值,先明確定義域:R,再求導(dǎo)數(shù)在定義域下求導(dǎo)函數(shù)的零點(diǎn):或,通過列表分析,根據(jù)導(dǎo)函數(shù)符號變化規(guī)律,確定單調(diào)區(qū)間及極值,即的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,當(dāng) 時(shí), 取極小值 ,當(dāng) 時(shí), 取極大值 , (2)本題首先要正確轉(zhuǎn)化:“對于任意的,都存在,使得”等價(jià)于兩個(gè)函數(shù)值域的包含關(guān)系.設(shè)集合,集合則,其次挖掘隱含條件,簡化討論情況,明確討論方向.由于,所以,因此,又,所以,即
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知,( a為常數(shù),e為自然對數(shù)的底).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中,為自然對數(shù)的底數(shù)。
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分12分)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),函數(shù)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
解(1)由已知有令,解得或,列表如下:
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)
(2)時(shí)取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)的極大值構(gòu)成的函數(shù),將a換元為x,試判斷是否能與(m為確定的常數(shù))相切,并說明理由.
(Ⅰ)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(Ⅱ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),證明:.
已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)若在區(qū)間上單調(diào)遞增,求b的取值范圍.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對于任意的,不等式在上恒成立,求的取值范圍.
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
(3)⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號