【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為,公比為-的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1,并寫(xiě)出數(shù)列{an}的通項(xiàng)公式.
【答案】(1)(2)an=n+1
【解析】
(1)直接利用已知條件求出數(shù)列的通項(xiàng)公式和前n項(xiàng)和.
(2)利用遞推關(guān)系式求出數(shù)列的通項(xiàng)公式.
解:(1)數(shù)列{an}是首項(xiàng)為,公比為-的等比數(shù)列,
所以:,=.
則:.
(2)bn=n,則:2Sn=(an+2)n,
則:2Sn+1=(an+1+2)(n+1),
所以:2an+1=(n+1)an+1-nan+2,
即:(n-1)an+1+2=nan,
所以:an+an+2=2an+1,
由于2S1=a1+2,
解得:a1=2.
所以數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列.
所以:an=n+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(1)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說(shuō)明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題中:
①命題: ;
②函數(shù)f(x)=2x﹣x2有三個(gè)零點(diǎn);
③對(duì)(x,y)∈{(x,y)|4x+3y﹣10=0},則x2+y2≥4.
④已知函數(shù) ,若△ABC中,角C是鈍角,那么f(sinA)>f(cosB)
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 C:離心率,短軸長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,橢圓左頂點(diǎn)為A,過(guò)原點(diǎn)O的直線(與坐標(biāo)軸不重合)與橢圓C交于P,Q兩點(diǎn),直線PA,QA分別與y軸交于M,N兩點(diǎn).試問(wèn)以MN為直徑的圓是否經(jīng)過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:過(guò)點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過(guò)F的直線l與橢圓C相交于A、B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(a>0且a≠1)是奇函數(shù),
(1)求實(shí)數(shù)m的值;
(2)若a=,并且對(duì)區(qū)間[3,4]上的每一個(gè)x的值,不等式f(x)>()x+t恒成立,求實(shí)數(shù)t的取值范圍.
(3)當(dāng)x∈(r,a-2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1) 把的圖象上每一點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,再將橫坐標(biāo)向右平移 個(gè)單位,可得圖象,求,的值;
(2) 若對(duì)任意實(shí)數(shù)和任意,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的奇函數(shù)f(x)的周期為4,且x∈(0,2)時(shí)f(x)=ln(x2﹣x+b),若函數(shù)f(x)在區(qū)間[﹣2,2]上恰有5個(gè)零點(diǎn),則實(shí)數(shù)b應(yīng)滿足的條件是( )
A.﹣1<b≤1
B.﹣1<b<1或b=
C. <b
D. <b≤1或b=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com