4.為了完成銷售任務(wù),甲、乙兩家服裝店在本月最后一天舉行大型優(yōu)惠促銷活動(dòng),現(xiàn)將兩家服裝店該日8個(gè)時(shí)段的成交量(單位:件)統(tǒng)計(jì)如表所示:
6791222201514
89112122191516
(Ⅰ)根據(jù)以上數(shù)據(jù),繪制甲、乙兩家服裝店該日8個(gè)時(shí)段成交量的莖葉圖;
(Ⅱ)現(xiàn)從乙店的成交量小于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.

分析 (Ⅰ)根據(jù)莖葉圖的繪制要求,繪制莖葉圖.
(Ⅱ)用列舉法求古典概型的概率

解答 解:(Ⅰ)甲、乙兩家服裝店該日8個(gè)時(shí)段成交量的莖葉圖如圖

(Ⅱ)從圖表中看出乙服裝店成交量低于16的數(shù)據(jù)有8,9,11,15,從這五個(gè)數(shù)據(jù)中隨機(jī)抽取兩個(gè),出現(xiàn)的組合有(9,8)(8,11)(8,15)(9,11)(9,15)(11,15)
則至少有一個(gè)數(shù)據(jù)小于10的事件(8,9),故所求概率為$\frac{5}{6}$.

點(diǎn)評(píng) 本題考查了葉圖的繪制要求方法以及用列舉法求古典概型的概率問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一個(gè)計(jì)算:12+32+52+…+9992的值的程序框圖如下,試編寫其程序

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.f(x)=|3-x|+|x-2|的最小值為( 。
A.-1B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)有3個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲乙兩個(gè)游戲可供參加之選擇,為增加趣味項(xiàng),約定:每個(gè)人通過投擲一枚質(zhì)地均勻的骰子決定自已去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X、Y分別表示著4個(gè)人中取參加甲乙游戲的人數(shù),記ξ=|X-Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=-aln(x+1)+$\frac{a+1}{x+1}$-a-1(a∈R).
(Ⅰ)討論f(x)在(0,+∞)上的單調(diào)性;
(Ⅱ)若對(duì)任意的正整數(shù)n都有(1+$\frac{1}{n}$)n-a>e成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x、y的取值如表:
x0134
y2.24.34.86.7
若x、y具有線性相關(guān)關(guān)系,且回歸方程為$\stackrel{∧}{y}$=0.95x+a,則a的值為2.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知α是第三象限角,sinα=-$\frac{1}{3}$,則cotα=( 。
A.$\frac{{\sqrt{2}}}{4}$B.-2$\sqrt{2}$C.-$\frac{{\sqrt{2}}}{4}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則異面直線A1C1與AB1間的距離為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=x${\;}^{\frac{1}{3}}$+x3為( 。
A.奇函數(shù)B.偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案