10.拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為N,過點(diǎn)F作直線與拋物線交于A,B兩點(diǎn),若$\overrightarrow{NB}•\overrightarrow{AB}=0$,則|AF|-|BF|=( 。
A.2B.3C.4D.5

分析 設(shè)直線l的方程,代入拋物線方程,利用韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,分別求得A和B點(diǎn)橫坐標(biāo),根據(jù)拋物線的焦半徑公式,即可求得則|AF|-|BF|.

解答 解:拋物線y2=4x的焦點(diǎn)為F(1,0),假設(shè)直線AN的斜率k存在,設(shè)AB方程為:y=k(x-1),
$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,整理得:k2x2-2(k2+2)x+k2=0
設(shè)兩交點(diǎn)為A(x2,y2),B(x1,y1),
∵$\overrightarrow{NB}•\overrightarrow{AB}=0$,則∠NBF=90°,
∴(x1-1)(x1+1)+y12=0,
∴x12+y12=1,∴x12+4x1-1=0(x1>0),∴x1=-2+$\sqrt{5}$,
∵x1x2=1,∴x2=2+$\sqrt{5}$,
∴|AF|-|BF|=(x2+1)-(x1+1)=4,
故選C.

點(diǎn)評 本題考查直線與拋物線的位置關(guān)系,考查拋物線的定義,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱錐A-BCD中,已知△ABD,△BCD都是邊長為2的等邊三角形,E為BD中點(diǎn),且AE⊥平面BCD,F(xiàn)為線段AB上一動點(diǎn),記$\frac{BF}{BA}=λ$.
(1)當(dāng)$λ=\frac{1}{3}$時(shí),求異面直線DF與BC所成角的余弦值;
(2)當(dāng)CF與平面ACD所成角的正弦值為$\frac{{\sqrt{15}}}{10}$時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知e是自然對數(shù)的底數(shù),函數(shù)f(x)=(ax2+x)ex,若f(x)在[-1,1]上是單調(diào)增函數(shù),則a的取值范圍是( 。
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某公司計(jì)劃明年用不超過6千萬元的資金投資于本地養(yǎng)魚場和遠(yuǎn)洋捕撈隊(duì).經(jīng)過本地養(yǎng)魚場年利潤率的調(diào)研,得到如圖所示年利潤率的頻率分布直方圖.對遠(yuǎn)洋捕撈隊(duì)的調(diào)研結(jié)果是:年利潤率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設(shè)該公司投資本地養(yǎng)魚場的資金為x(x≥0)千萬元,投資遠(yuǎn)洋捕撈隊(duì)的資金為y(y≥0)千萬元.
(1)利用調(diào)研數(shù)據(jù)估計(jì)明年遠(yuǎn)洋捕撈隊(duì)的利潤ξ的分布列和數(shù)學(xué)期望Eξ.
(2)為確保本地的鮮魚供應(yīng),市政府要求該公司對本地養(yǎng)魚場的投資不得低于遠(yuǎn)洋捕撈隊(duì)的一半.適用調(diào)研數(shù)據(jù),給出公司分配投資金額的建議,使得明年兩個(gè)項(xiàng)目的利潤之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)校有甲、乙兩個(gè)實(shí)驗(yàn)班,為了了解班級成績,采用分層抽樣的方法從甲、乙兩個(gè)班學(xué)生中分別抽取8名和6名測試他們的數(shù)學(xué)成績與英語成績(單位:分),用表示(m,n).下面是乙班6名學(xué)生的測試分?jǐn)?shù):A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(xiàn)(134,132),當(dāng)學(xué)生的數(shù)學(xué)、英語成績滿足m≥135,且n≥130時(shí),該學(xué)生定為優(yōu)秀學(xué)生.
(1)已知甲班共有80名學(xué)生,用上述樣本數(shù)據(jù)估計(jì)乙班優(yōu)秀生的數(shù)量;
(2)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取3名,求至少有兩名優(yōu)秀生的概率;
(3)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取2名,其中優(yōu)秀生數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從甲廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取3件樣品,從乙廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取4件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測量數(shù)據(jù)的莖葉圖.若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的m,n的比值$\frac{m}{n}$=( 。
A.1B.$\frac{1}{3}$C.$\frac{8}{3}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}中,a1=-l,an+1=2an+(3n-1)•3n+1,(n∈N*),則其通項(xiàng)an=31•2n+(3n-10)•3n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)P在圓C:x2+y2=4上,而Q為P在x軸上的投影,且點(diǎn)N滿足$\overrightarrow{PN}=\overrightarrow{NQ}$,設(shè)動點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若A,B是曲線E上兩點(diǎn),且|AB|=2,O為坐標(biāo)原點(diǎn),求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,互相垂直的兩條道路l1、l2相交于O點(diǎn),點(diǎn)P與l1、l2的距離分別為2千米、3千米,過點(diǎn)P建一條直線道路AB,與l1、l2分別交于A、B兩點(diǎn). 
(1)當(dāng)∠BAO=45°時(shí),試求OA的長;
(2)若使△AOB的面積最小,試求OA、OB的長.

查看答案和解析>>

同步練習(xí)冊答案