17.已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的圖象關(guān)于原點對稱,且圖象在點(1,f(1))處的切線與直線x+6y+11=0垂直,導(dǎo)函數(shù)f′(x)的最大值為12.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=3x2+m有三個不同的實數(shù)根,求實數(shù)m的取值范圍.

分析 (1)根據(jù)函數(shù)的奇偶性求出b=d=0,根據(jù)切線和直線的關(guān)系得到關(guān)于a,c的方程組,求出a,c的值,從而求出函數(shù)的表達(dá)式;
(2)問題轉(zhuǎn)化為m=-2x3-3x2+12x,令g(x)=-2x3-3x2+12x,求出g(x)的極大值和極小值,從而求出m的范圍即可.

解答 解:(1)∵f(x)是奇函數(shù),則f(0)=0,∴b=0,d=0,
∴f′(x)=3ax2+c,則$\left\{\begin{array}{l}{f′(1)=6}\\{c=12}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=-2}\\{c=12}\end{array}\right.$,
∴f(x)=-2x3+12x;
(2)∵f(x)=3x2+m,∴m=-2x3-3x2+12x,
令g(x)=-2x3-3x2+12x,則g′(x)=-6x2-6x+12,
令g′(x)>0,解得:-2<x<1,令g′(x)<0,解得:x>1或x<-2,
∴g(x)在(-∞,-2),(1,+∞)遞減,在(-2,1)遞增,
∴g(x)的極大值是7,極小值是-20,
故m的范圍是(-20,7).

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>0時,$1-\frac{1}{x}≤lnx≤x-1$;
(3)當(dāng)x∈N*時,證明$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)在(-∞,1)上單調(diào)遞增B.函數(shù)f(x)在(-∞,1)上單調(diào)遞減
C.函數(shù)f(x)在(-2,2)上單調(diào)遞增D.函數(shù)f(x)在(-2,2)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)是定義在R上的函數(shù),其中f(x)的導(dǎo)函數(shù)f′(x)滿足f′(x)<f(x)對于x∈R恒成立,則( 。
A.f(2)>e2f(0),f(2016)>e2016f(0)B.f(2)<e2f(0),f(2016)>e2016f(0)
C.f(2)<e2f(0),f(2016)<e2016f(0)D.f(2)>e2f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3-3x2+1-$\frac{3}{a}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若A(x1,y1),B(x2,y2)為曲線y=f(x)上兩點,線段AB與x軸有公共點,且x1,x2均為y=f(x)的極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x),g(x)在(3,7)上均可導(dǎo),且f′(x)<g′(x),則當(dāng)3<x<7時,有( 。
A.f(x)>g(x)B.f(x)+g(3)<g(x)+f(3)C.f(x)<g(x)D.f(x)+g(7)<g(x)+f(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)在區(qū)間(1,2)內(nèi)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=mlnx+\frac{3}{2}{x^2}-4x$.
(1)若曲線y=f(x)在x=1處的切線與y軸垂直,求函數(shù)f(x)的極值;
(2)設(shè)g(x)=x3-4,若h(x)=f(x)-g(x)在(1,+∞)上單調(diào)遞減,求實數(shù)m的取值范圍,并分析方程$2lnx+\frac{3}{2}{x^2}+4={x^3}+4x$在(1,+∞)上實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若M∈平面α,M∈平面β,則α與β的位置關(guān)系是( 。
A.平行B.相交C.異面D.不確定

查看答案和解析>>

同步練習(xí)冊答案