已知,其中是常數(shù).
(1)若是奇函數(shù),求的值;
(2)求證:的圖像上不存在兩點(diǎn)A、B,使得直線AB平行于軸.
(1);(2)證明見解析.
解析試題分析:(1)奇函數(shù)的問題,可以根據(jù)奇函數(shù)的定義,利用來解決,由于本題中有對(duì)數(shù)符號(hào),有根式,因此根據(jù)求出后,最好能再求出函數(shù)的定義域,驗(yàn)證下它是奇函數(shù);(2)要證明函數(shù)的圖像上不存在兩點(diǎn)A、B,使得直線AB平行于軸,即方程不可能有兩個(gè)或以上的解,最多只有一個(gè)解,由于表達(dá)式不太簡便,因此我們可以從簡單的方面入手試試看,看是不是單調(diào)函數(shù),本題函數(shù)正好能根據(jù)單調(diào)性的定義證明此函數(shù)是單調(diào)函數(shù),故本題結(jié)論得證.
試題解析:(1)解法一:設(shè)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/9/1i0cv3.png" style="vertical-align:middle;" />,則:
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/8/0d6zy.png" style="vertical-align:middle;" />是奇函數(shù),所以對(duì)任意,有, 3分
得. 5分
此時(shí),,,為奇函數(shù)。 6分
解法二:當(dāng)時(shí),函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,函數(shù)不是奇函數(shù). 2分
當(dāng)時(shí),函數(shù)的定義域是一切實(shí)數(shù). 3分
要使得函數(shù)是奇函數(shù),則對(duì)成立。 5分
所以 6分
(2)設(shè)定義域內(nèi)任意,設(shè)
9分
當(dāng)時(shí),總有,
,得; 11分
當(dāng)時(shí),
,得。
故總有在定義域上單調(diào)遞增 13分
的圖像上不存在兩點(diǎn),使得所連的直線與軸平行 14分
考點(diǎn):(1)函數(shù)的奇偶性;(2)函數(shù)的單調(diào)性與方程的解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)V為全體平面向量構(gòu)成的集合,若映射f:
V→R滿足:
對(duì)任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),則稱映射f具有性質(zhì)p.
現(xiàn)給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
分析映射①②③是否具有性質(zhì)p.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在上的函數(shù)是偶函數(shù),且時(shí), 。
(1)當(dāng)時(shí),求解析式;
(2)當(dāng),求取值的集合;
(3)當(dāng),函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/7/ikeus1.png" style="vertical-align:middle;" />,求滿足的條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某醫(yī)藥研究所開發(fā)一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時(shí)間x(小時(shí))之間滿足y=其對(duì)應(yīng)曲線(如圖所示)過點(diǎn).
(1)試求藥量峰值(y的最大值)與達(dá)峰時(shí)間(y取最大值時(shí)對(duì)應(yīng)的x值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長的有效時(shí)間(精確到0.01小時(shí))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(a為常數(shù))在x=1處的切線的斜率為1.
(1)求實(shí)數(shù)a的值,并求函數(shù)的單調(diào)區(qū)間,
(2)若不等式≥k在區(qū)間上恒成立,其中e為自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)同時(shí)滿足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)=的解析式;
(2)設(shè)g(x)=,若存在實(shí)數(shù)x∈[1,e],使<,求實(shí)數(shù)m的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足:對(duì)任意,都有成立,且時(shí),.
(1)求的值,并證明:當(dāng)時(shí),;
(2)判斷的單調(diào)性并加以證明;
(3)若在上遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=2x,g(x)=3-x2,試判斷函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com