已知函數(shù)(a為常數(shù))在x=1處的切線的斜率為1.
(1)求實數(shù)a的值,并求函數(shù)的單調(diào)區(qū)間,
(2)若不等式≥k在區(qū)間上恒成立,其中e為自然對數(shù)的底數(shù),求實數(shù)k的取值范圍.

(1)的單調(diào)遞增區(qū)間是,的單調(diào)遞減區(qū)間是;(2).

解析試題分析:(1)先求,利用在處的導(dǎo)數(shù)就是此點處切線斜率,即,算出a,然后確定函數(shù)的定義域,利用的區(qū)間為函數(shù)的增區(qū)間,的區(qū)間為函數(shù)的減區(qū)間;(2)將不等式恒成立轉(zhuǎn)化成,利用(1)的單調(diào)性,判斷出上的最小值為,所以分別求出,然后比較得出最小值.即,此題考察利用導(dǎo)數(shù)研究函數(shù)性質(zhì),邏輯推理要嚴謹,此題屬于中檔題.
試題解析:(1)
由題知:,解得,.
,定義域
,由,得
時,,此時,上單調(diào)遞減.
時,,此時,,上單調(diào)遞增.
綜上:的單調(diào)遞增區(qū)間是,的單調(diào)遞減區(qū)間是.
(2)由(1)知在上單調(diào)遞增,在上單調(diào)遞減.
上的最小值為
,
上的最小值為
上恒成立,則

考點:1.求函數(shù)的導(dǎo)數(shù);2.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)f(x)=2x2-2ax+3在區(qū)間[-1,1]上最小值記為g(a).
(1)求g(a)的函數(shù)表達式;
(2)求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)在R上是減函數(shù).
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,其中是常數(shù).
(1)若是奇函數(shù),求的值;
(2)求證:的圖像上不存在兩點A、B,使得直線AB平行于軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性并證明;
(2)當時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(2x)
(I)用定義證明函數(shù)上為減函數(shù)。
(II)求上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù))在是單調(diào)減函數(shù),且為偶函數(shù).
(1)求的解析式;
(2)討論的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè),,其中.
(I) 若,求的值;    (II) 若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+(a、b是正常數(shù))在區(qū)間上的單調(diào)性(只需寫出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.

查看答案和解析>>

同步練習冊答案