已知平面向量
a
,
b
滿足
|a|
=1,
|b|
=2,且(
a
+
b
)⊥
a
,則
a
b
的夾角為( 。
分析:利用向量的數(shù)量積公式,結(jié)合
|a|
=1,
|b|
=2,且(
a
+
b
)⊥
a
,即可求得結(jié)論.
解答:解:∵
|a|
=1,
|b|
=2,且(
a
+
b
)⊥
a
,
∴(
a
+
b
)•
a
=1+1×2×cos<
a
,
b
>=0
∴cos<
a
,
b
>=-
1
2

∵<
a
,
b
>∈[0,π]
∴<
a
,
b
>=
3

故選B.
點評:本題考查向量的數(shù)量積公式,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)已知平面向量
a
,
b
滿足條件
a
+
b
=(0,1),
a
-
b
=(-1,2),則
a
b
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
,
b
滿足
|a|
=3,
|b|
=3,
|b|
=2,
a
b
的夾角為60°,若(
a
-m
b
)⊥
a
,則實數(shù)m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
、
b
滿足|
a
|=3,|
b
|=2,
a
、
b
的夾角為60°,若(
a
-m
b
)丄
a
,則實數(shù)m的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
滿足:
a
+
b
=(1,2)
,
a
-
b
=(5,-2)
,則向量
a
b
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
滿足:
a
=(-1,2)
,
b
a
,且|
b
|=2
5
,則向量
b
的坐標(biāo)為
(4,2)或(-4,-2)
(4,2)或(-4,-2)

查看答案和解析>>

同步練習(xí)冊答案