8.已知α是第四象限角,且$\frac{sin2α}{1+cos2α}=-\frac{1}{3}$,則sin2α=(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$-\frac{{3\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

分析 用二倍角公式化簡(jiǎn)$\frac{sin2α}{1+cos2α}=-\frac{1}{3}$,求出tanα的值,再弦化切求出sin2α的值.

解答 解:α是第四象限角,且$\frac{sin2α}{1+cos2α}=-\frac{1}{3}$,
∴$\frac{2sinαcosα}{{2cos}^{2}α}$=-$\frac{1}{3}$,
∴tanα=-$\frac{1}{3}$,
∴sin2α=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{2tanα}{{tan}^{2}α+1}$
=$\frac{2×(-\frac{1}{3})}{{(-\frac{1}{3})}^{2}+1}$
=-$\frac{3}{5}$. 
故選:D.

點(diǎn)評(píng) 本題考查了二倍角公式以及弦化切公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知復(fù)數(shù)z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$,若z2+az+b=1-i,
(1)z,|z|;
(2)求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),x∈R.
(1)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,f(A)=-1,a=$\sqrt{7}$且向量$\overrightarrow{m}$=(3,sinB)與$\overrightarrow{n}$=(2,sinC)共線,求邊長(zhǎng)b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$a={log_{0.3}}2,b=sin\frac{π}{18},c={(0.5)^{-2}}$,則( 。
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知tanθ=2,則2sin2θ+sinθcosθ=( 。
A.$-\frac{3}{4}$B.$\frac{5}{6}$C.2D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列命題中正確命題的個(gè)數(shù)是(  )
(1)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
(2)在回歸直線$\widehat{y}$=1+2x中,x增加1個(gè)單位時(shí),y一定減少2個(gè)單位;
(3)命題p:?x0∈R,使得x02+x0+1<0,則¬p:?x∈R,均有x2+x+1≥0;
(4)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=P0,則P(-1<ξ<0)=$\frac{1}{2}$-P0
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在等差數(shù)列{an}中,若a2+a4+a9=12,則a3+a7=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知點(diǎn)A(2,3),B(6,1),O為坐標(biāo)原點(diǎn),P為x軸上一動(dòng)點(diǎn).
(Ⅰ)若$\overrightarrow{AP}$⊥$\overrightarrow{BP}$,求點(diǎn)P的坐標(biāo);
(Ⅱ)$當(dāng)\overrightarrow{AP}•\overrightarrow{BP}取最小值時(shí),求向量\overrightarrow{AP}與\overrightarrow{BP}的夾角的余弦值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,則目標(biāo)函數(shù)z=y-$\frac{1}{2}x$的最小值為(  )
A.-1B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案