19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,則z=2${\;}^{x-\frac{y}{2}}$的最小值為${2}^{-\frac{3}{2}}$.

分析 畫出不等式組表示的平面區(qū)域,求出目標$m=x-\frac{y}{2}$的最小值,即可求出z的最小值.

解答 解:畫不等式組$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域,如圖所示;

由題可知$z={2^{x-\frac{y}{2}}}$,
設$m=x-\frac{y}{2}$,
要使z最小,只需m最小即可,
當經(jīng)過點B(0,3)時,m最小為$-\frac{3}{2}$,
所以z的最小值為${2^{-\frac{3}{2}}}$.
故答案為:${2}^{-\frac{3}{2}}$.

點評 本題考查了線性規(guī)劃的基本應用問題,利用目標函數(shù)的幾何意義是解題的關(guān)鍵,利用數(shù)形結(jié)合是解題的基本方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的通項公式是an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$.
(1)判斷$\frac{98}{101}$是不是數(shù)列{an}中的一項;
(2)試判斷數(shù)列{an}中的項是否都在區(qū)間(0,1)內(nèi);
(3)在區(qū)間($\frac{1}{3}$,$\frac{2}{3}$)內(nèi)有無數(shù)列{an}中的項?若有,是第幾項?若沒有.請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.復數(shù)$z=\frac{2i}{1+i}$(其中i為虛數(shù)單位),化簡后z=1+i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知中心在原點的橢圓C的右焦點為(1,0),一個頂點為$(0,\sqrt{3})$,若在此橢圓上存在不同兩點關(guān)于直線y=2x+m對稱,則m的取值范圍是( 。
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($-\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{13}}}{13}$)C.($-\frac{1}{2},\frac{1}{2}$)D.($-\frac{{\sqrt{15}}}{13},\frac{{\sqrt{15}}}{13}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知正實數(shù)m,n滿足$\frac{1}{m+n}$+$\frac{1}{m-n}$=1,則3m+2n的最小值為3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,則f(3)=( 。
A.-3B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.記“點M(x,y)滿足x2+y2≤a(a>0)”為事件A,記“M(x,y)滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”為事件B,若P(B|A)=1,則實數(shù)a的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知點A(-$\sqrt{3}$,0)和點B($\sqrt{3}$,0),動點M到A點的距離是4,線段MB的垂直平分線交線段MA于點P.
(1)求動點P的軌跡方程;
(2)若直線l過點D(1,0)且與橢圓交于E,F(xiàn)兩點,求△OEF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“m>0”是“復數(shù)z=m+$\frac{2}{-1+i}$在復平面內(nèi)對應點位于第四象限”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習冊答案