19.拋物線y2=2x的焦點坐標為(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,0)D.(1,0)

分析 拋物線y2=2px(p>0)的焦點坐標為F($\frac{p}{2}$,0).

解答 解:拋物線y2=2x的焦點坐標為($\frac{1}{2}$,0).
故選:C.

點評 本題考查拋物線的焦點坐標的求法,考查拋物線的性質等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.集合A={x|x2-x-2≤0},B={x|x2-2x+k≤0},若B⊆A,求k范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.某程序框圖如圖所示,若輸出的S=26,則判斷框內應填入:k>3;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知命題p:函數(shù)f(x)=x2-2ax+3在區(qū)間[-1,2]上單調遞增;
命題q:函數(shù)g(x)=lg(x2+ax+4)的定義域為R;
若命題“p∧q”為假,“p∨q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-x2+1.
(I)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(II)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知a∈R,函數(shù)f(x)滿足f(2x)=x2-2ax+a2-1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在$[{2^{a-1}},{2^{{a^2}-2a+2}}]$上的值域為[-1,0],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.命題“?x∈R,x2+1>0”的否定是( 。
A.?x∈R,x2+1<0B.?x∈R,x2+1≤0C.?x∈R,x2+1≤0D.?x∈R,x2+1<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知△ABC滿足$AB=4,AC=2,∠BAC=\frac{2π}{3}$,點D、E分別是邊AB,BC的中點,連接DE并延長到點F,使得DE=2EF,則 $\overrightarrow{AF}•\overrightarrow{DC}$的值為( 。
A.-$\frac{3}{2}$B.$\frac{9}{4}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.根據(jù)如下樣本數(shù)據(jù)
345678
y4.02.5-0.50.5-2.0-3.0
得到的回歸方程為${\;}_{y}^{∧}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$,則( 。
A.${\;}_{a}^{∧}$>0,${\;}_^{∧}$>0B.${\;}_{a}^{∧}$>0,${\;}_^{∧}$<0C.${\;}_{a}^{∧}$<0,${\;}_^{∧}$>0D.${\;}_{a}^{∧}$<0,${\;}_^{∧}$<0

查看答案和解析>>

同步練習冊答案