【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .
(1)求證: 平面;
(2)線段上是否存在一點,使得 ?若存在,確定點的位置;若不存在,請說明理由.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)ACBC,BEAC,所以AC平面BCE.(2)存在,點M為線段EF中點。
試題解析:
(1)過C作CNAB,垂足為N,因為ADDC,所以四邊形ADCN為矩形.所以ANNB2.又因為AD2,AB4,所以AC,CN,BC, 所以AC2+BC2AB2,所以ACBC;
因為AF平面ABCD,AF//BE所以BE平面ABCD,所以BEAC,
又因為BE平面BCE,BC平面BCE,BEBCB,
所以AC平面BCE.
(2)存在,點M為線段EF中點,證明如下:在矩形ABEF中,因為點M,N為線段AB的中點,所以四邊形BEMN為正方形,所以BMEN;因為AF平面ABCD,AD平面ABCD,所以AFAD.在直角梯形ABCD中,ADAB,又AFABA,所以AD平面ABEF,又CN//AD,所以CN平面ABEF,
又BM平面ABEF所以CNBM;
又 CNENN,所以BM平面ENC,
又EC平面ENC,
所以BMCE.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點為,準(zhǔn)線為,三個點, , 中恰有兩個點在上.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過的直線交于, 兩點,點為上任意一點,證明:直線, , 的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】具有性質(zhì):的函數(shù),我們稱為滿足“倒負(fù)”變換的函數(shù)。給出下列函數(shù):
① ② ③ 其中滿足“倒負(fù)”變換的函數(shù)是()
A. ①② B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .
(1)求證: 平面;
(2)線段上是否存在一點,使得 ?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若且時,有成立.
(1)判斷在上的單調(diào)性,并用定義證明;
(2)解不等式;
(3)若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知, ,且,記動點的軌跡為.
(Ⅰ)求曲線方程;
(Ⅱ)過點的動直線與曲線相交兩點,試問在軸上是否存在與點不同的定點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com