【題目】已知拋物線: 的焦點為,準線為,三個點, , 中恰有兩個點在上.
(1)求拋物線的標準方程;
(2)過的直線交于, 兩點,點為上任意一點,證明:直線, , 的斜率成等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】為對南康區(qū)和于都縣兩區(qū)縣某次聯(lián)考成績進行分析,隨機抽查了兩地一共10000名考生的成績,根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.
(1)求成績在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)平均數(shù);
(3)為了分析成績與班級、學校等方面的關(guān)系,必須按成績再從這10000人中用分層抽樣方法抽出20人作進一步分析,則成績在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知和具有線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當年產(chǎn)量為多少噸時,年利潤取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: , ,
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線與的交點為,四邊形為梯形, .
(Ⅰ)若,求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若, , ,求與平面所成角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當時,記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中, 的兩個頂點的坐標分別為,三個內(nèi)角滿足.
(1)若頂點的軌跡為,求曲線的方程;
(2)若點為曲線上的一點,過點作曲線的切線交圓于不同的兩點(其中在的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點, 且(為坐標原點)?若存在,寫出該圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的一元二次方程,其中。
(I)若隨機選自集合,隨機選自集合,求方程有實根的概率;
(Ⅱ)若隨機選自區(qū)間,隨機選自區(qū)間,求方程有實根的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .
(1)求證: 平面;
(2)線段上是否存在一點,使得 ?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com