9.某人在2013年投資的1000萬元,如果年收益率是5%,按復(fù)利計(jì)算,5年后能收回的本利和為( 。
A.1000×(1+5×5%)萬元B.1000×(1+5%)5萬元
C.$1000×\frac{{1.05×(1-{{1.05}^4})}}{1-1.05}萬元$D.$1000×\frac{{1.05×(1-{{1.05}^2})}}{1-1.05}萬元$

分析 由題意可得每一年的本利之和構(gòu)成等比數(shù)列,且公比為1+5%,由此求得5年后的本利和.

解答 解:由題意可得,投資的1000萬元后,每一年的本利之和構(gòu)成等比數(shù)列,
且公比為1+5%,
故5年后支本利和應(yīng)為1000×(1+5%)5萬元,
故選:B.

點(diǎn)評(píng) 本題主要考查指數(shù)函數(shù)的性質(zhì)應(yīng)用,等比數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.方程ax2+ay2-4(a-1)x+4y=0表示圓,則實(shí)數(shù)a的取值范圍( 。
A.RB.(-∞,0)∪(0,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,勘探隊(duì)員朝一座山行進(jìn),在前后兩處A,B觀察塔尖P及山頂Q.已知P,Q,A,B,O在同一平面且與水平面垂直.設(shè)塔高PQ=h,山高QO=H,AB=m,BO=n,仰角∠PAO=α,仰角∠QAO=β,仰角∠PBO=θ.試用m,α,β,θ表示h,h=$\frac{msinα}{sin(θ-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.全集U=R,若集合A={x|3≤x<10},B={x|1<x-1≤6},則
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},滿足C∪A=C時(shí),求a的取值范圍.(結(jié)果用區(qū)間或集合表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)為奇函數(shù),且x>0時(shí)f(x)=2x-2,則不等式f(x+1)<0的解集為( 。
A.{x|x<0或1<x<2}B.{x|-2<x<-1或x>0}C.{x|x<-2或-1<x<0}D.{x|0<x<1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在正項(xiàng)等比數(shù)列{an}中,a5a4a2a1=16,則a1+a5的最小值是( 。
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知角α的終邊經(jīng)過點(diǎn)(3a,-4a)(a<0),則sinα-cosα等于( 。
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1},
(1)若a=$\frac{7}{2}$,求M∪N; (∁RM)∩N;
(2)若M?N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.拋物線y2=4x的焦點(diǎn)到雙曲線$\frac{x^2}{2}-\frac{y^2}{8}=1$的漸近線的距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案