18.已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1},
(1)若a=$\frac{7}{2}$,求M∪N; (∁RM)∩N;
(2)若M?N,求實(shí)數(shù)a的取值范圍.

分析 (1)根據(jù)a=$\frac{7}{2}$,求出集合N,根據(jù)集合的基本運(yùn)算即可求M∪N,(∁UM)∩N;
(2)根據(jù)M?N,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)由題意:M={x|-2≤x≤5},
則∁RM={x|x>5或x<-2},
當(dāng)a=$\frac{7}{2}$時(shí),N={x|a+1≤x≤2a-1}={x|$\frac{9}{2}≤x≤6$}.
∴M∪N={x|-2≤x≤6},
(∁RM)∩N={x|5<x≤6}.
(2)∵M(jìn)?N,
∴當(dāng)N=∅時(shí),滿足題意,此時(shí),2a-1<a+1,解得:a<2;
當(dāng)N≠∅時(shí),要使M?N成立,則需滿足$\left\{\begin{array}{l}{a+1≤2a-1}\\{a+1≥-2}\\{2a-1≤5}\end{array}\right.$,
解得:2≤a≤3.
綜上所得,實(shí)數(shù)a的取值范圍是(-∞,3].

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|x≥-1},則正確的是( 。
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某人在2013年投資的1000萬(wàn)元,如果年收益率是5%,按復(fù)利計(jì)算,5年后能收回的本利和為( 。
A.1000×(1+5×5%)萬(wàn)元B.1000×(1+5%)5萬(wàn)元
C.$1000×\frac{{1.05×(1-{{1.05}^4})}}{1-1.05}萬(wàn)元$D.$1000×\frac{{1.05×(1-{{1.05}^2})}}{1-1.05}萬(wàn)元$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.為了得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象作如下變換( 。
A.向右平移個(gè)單位$\frac{π}{3}$B.向右平移個(gè)單位$\frac{π}{6}$
C.向左平移個(gè)單位$\frac{π}{3}$D.向左平移個(gè)單位$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四棱柱ABCD-A1B1C1D1的底面AB是CD菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(1)證明:BD⊥平面A1CO;
(2)若∠BAD=60°,求直線A1C與平面AA1D1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知復(fù)數(shù)z滿足(2-i)z=5,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.?dāng)?shù)列{an}滿足:an-2an-1=0(n≥2),a1=1,則a2與a4的等差中項(xiàng)是( 。
A.-5B.-10C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,D是Rt△BAC斜邊BC上的一點(diǎn),AC=$\sqrt{3}$DC.
(1)若BD=2DC=2,求AD的長(zhǎng).
(2)若AB=AD,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|2a-1<x<3a+1},集合B={x|-1<x<4}.
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得A=B?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案