雙曲線C:x2-y2=1的離心率e=   
【答案】分析:由雙曲線方程求出三參數(shù)a,b,c;據(jù)離心率求出離心率.
解答:解:∵雙曲線C的方程是x2-y2=1
∴a2=b2=1
∴c2=a2+b2=2

離心率∴
故答案為
點(diǎn)評(píng):本題考查由雙曲線的方程求三參數(shù)、考查雙曲線中三參數(shù)的關(guān)系:c2=a2+b2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C:x2-y2=1的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx-1與雙曲線C:x2-y2=4
(1)如果l與C只有一個(gè)公共點(diǎn),求k的值;
(2)如果l與C的左右兩支分別相交于A(x1,y1),B(x2,y2)兩點(diǎn),且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線C:x2-y2=1的右頂點(diǎn)為A,過(guò)A的直線l與雙曲線C的兩條漸近線交于P,Q兩點(diǎn),且
PA
=2
AQ
,則直線l的斜率為
±3
±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點(diǎn),右焦點(diǎn)坐標(biāo)為( 
2
,0).
(1)求雙曲線方程;
(2)設(shè)直線l與雙曲線C的右支交于不同的兩點(diǎn)A,B,記AB中點(diǎn)為M,求k的取值范圍,并用k表示M點(diǎn)的坐標(biāo).
(3)設(shè)點(diǎn)Q(-1,0),求直線QM在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:x2-y2=1的左右焦點(diǎn)分別為F1、F2,P是C上一點(diǎn),∠F1PF2=60°,
①求F1、F2的坐標(biāo);
②求雙曲線的準(zhǔn)線方程及離心率;
③求△F1PF2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案