【題目】某工廠新購置甲、乙兩種設(shè)備,分別生產(chǎn)A,B兩種產(chǎn)品,為了解這兩種產(chǎn)品的質(zhì)量,隨機(jī)抽取了200件進(jìn)行質(zhì)量檢測,得到質(zhì)量指標(biāo)值的頻數(shù)統(tǒng)計(jì)表如下:
質(zhì)量指標(biāo)值 | 合計(jì) | ||||||
A產(chǎn)品頻數(shù) | 2 | 6 | a | 32 | 20 | 10 | 80 |
B產(chǎn)品頻數(shù) | 12 | 24 | b | 27 | 15 | 6 | n |
產(chǎn)品質(zhì)量2×2列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
A產(chǎn)品 | |||
B產(chǎn)品 | |||
合計(jì) |
附:
(1)求a,b,n的值,并估計(jì)A產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù);
(2)若質(zhì)量指標(biāo)值大于50,則說明該產(chǎn)品質(zhì)量高,否則說明該產(chǎn)品質(zhì)量一般.請根據(jù)頻數(shù)表完成列聯(lián)表,并判斷是否有的把握認(rèn)為質(zhì)量高低與引入甲、乙設(shè)備有關(guān).
【答案】(1),,,53.25;(2)有.
【解析】
(1)由題意結(jié)合頻數(shù)分布表直接計(jì)算即可得、、,再由平均數(shù)公式即可求得平均數(shù);
(2)由題意列出列聯(lián)表,代入公式計(jì)算出,與比較即可得解.
(1)由題意得,,
,
∴可估計(jì)A產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)
;
(2)列聯(lián)表如下:
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
A產(chǎn)品 | 62 | 18 | 80 |
B產(chǎn)品 | 48 | 72 | 120 |
合計(jì) | 110 | 90 | 200 |
∴.
所以有的把握認(rèn)為產(chǎn)品質(zhì)量高低與引入甲乙設(shè)備有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:和圓:,,為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,當(dāng)直線與圓相切時,.
(Ⅰ)求的方程;
(Ⅱ)直線:與軸交于點(diǎn),且與橢圓和圓都相切,切點(diǎn)分別為,,記和的積分別為和,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)寫出及直線的直角坐標(biāo)方程,并指出是什么曲線;
(2)設(shè)是曲線上的一個動點(diǎn),求點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的極值;
(2)若對于任意實(shí)數(shù),當(dāng)時,函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了對某種商品進(jìn)行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關(guān)系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測數(shù)據(jù)如表所示:
月銷售單價(元/件) | ||||||
月銷售量(萬件) |
(1)若用線性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,和,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識,判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為和,請用說明哪個回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當(dāng)月銷售單價為何值時,商品的月銷售額預(yù)報(bào)值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角,,的對邊分別為,,,.設(shè)為線段上一點(diǎn),,有下列條件:
①;②;③.
請從以上三個條件中任選兩個,求的大小和的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為菱形, ,H為上的點(diǎn),過的平面分別交于點(diǎn),且平面.
(1)證明: ;
(2)當(dāng)為的中點(diǎn), ,與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com