【題目】已知△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足asinA-csinC=b(sinA-sinB).
(Ⅰ)求角C的大;
(Ⅱ)若邊長c=4,求△ABC的周長最大值.
【答案】(Ⅰ);(Ⅱ)12.
【解析】試題分析:(1)由正弦定理把角化為邊得到a2+b2-c2=ab,進(jìn)而根據(jù)余弦定理即可求角;
(2)利用正弦定理將邊化為角,得到a+b+c=+sinA+sin(-A),進(jìn)而利用和差角公式整理得到8sin(A+)+4,利用三角函數(shù)的性質(zhì)即可求解.
試題解析:
(Ⅰ)由已知,根據(jù)正弦定理,asinA-csinC=(a-b)sinB
得,a2-c2= b(a-b),即a2+b2-c2=ab.
由余弦定理得cosC==.
又C∈(0,π).
所以C=.
(Ⅱ)∵C=,,A+B=,
∴,
可得:a=sinA,b=sinB=sin(-A),
∴a+b+c=+sinA+sin(-A)
=+sinA+(cosA+sinA)
=8sin(A+)+4
∵由0<A<可知,<A+<,可得:<sin(A+)≤1.
∴△ABC的周長a+b+c的最大值為12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知f(x)=,求f(-)的值
(2)已知-π<x<0,sin(π+x)-cosx=-.
①求sinx-cosx的值;②求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求零點(diǎn)的個(gè)數(shù);
(3)若為整數(shù),且當(dāng)時(shí), 恒成立,求的最大值.
(參考數(shù)據(jù), , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對新研發(fā)的一種產(chǎn)品進(jìn)行試銷,得到如下數(shù)據(jù)及散點(diǎn)圖:
其中, , , .
(1)根據(jù)散點(diǎn)圖判斷與, 與哪一對具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(運(yùn)算過程及回歸方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為150元/ 時(shí),天銷售額的預(yù)報(bào)值為多少元?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).
(I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線l:x+2y=0垂直,求實(shí)數(shù)a的值;
(II)設(shè)函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點(diǎn),求m的值;
(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù).
(1)求函數(shù)的最小正周期;
(2)已知分別為三角形的內(nèi)角對應(yīng)的三邊長, 為銳角, , ,且恰是函數(shù)在上的最大值,求和三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線: ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線: .
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,求的參數(shù)方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com