A. | -1 | B. | 1 | C. | -2 | D. | 2 |
分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最小值.
解答 解:作出約束條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥2\end{array}\right.$對(duì)應(yīng)的平面區(qū)域(陰影部分),
由z=2x-y,得y=2x-z,
平移直線y=2x-z,由圖象可知當(dāng)直線y=2x-z,
經(jīng)過(guò)點(diǎn)A時(shí),直線y=2x-z的截距最大,此時(shí)z最小.
由 $\left\{\begin{array}{l}{y=2}\\{x-y+2=0}\end{array}\right.$,解得A(0,2).
此時(shí)z的最大值為z=2×0-2=-2,
故選:C.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {x|-1≤x≤3} | C. | {x|-3<x≤2} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{6π}{5}$ | B. | $\frac{5π}{6}$ | C. | $\frac{7π}{6}$ | D. | $\frac{12π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<1或m>3 | B. | 1<m<3 | C. | m<3 | D. | m>3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6sin({A+\frac{π}{3}})+3$ | B. | $6sin({A+\frac{π}{6}})+3$ | C. | $2\sqrt{3}sin({A+\frac{π}{3}})+3$ | D. | $2\sqrt{3}sin({A+\frac{π}{6}})+3$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com