【題目】2019年“中秋節(jié)”期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達監(jiān)控點先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度()分成七段后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:
(1)求的值,并說明交警部門采用的是什么抽樣方法?
(2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計值(精確到0.1);
(3)若該路段的車速達到或超過即視為超速行駛,試根據(jù)樣本估計該路段車輛超速行駛的概率.
【答案】(1),系統(tǒng)抽樣;(2)眾數(shù):,中位數(shù):;(3)
【解析】
(1)由頻率和為1求解即可,由記錄數(shù)據(jù)的方法可說明抽樣方法為系統(tǒng)抽樣;
(2)眾數(shù)是最高矩形底邊中點的橫坐標(biāo),中位數(shù)前的小矩形的面積和為0.5,由此求解即可;
(3)由頻率分布直方圖可得車速在中的頻數(shù),進而求解即可.
解:(1)由頻率分布直方圖知:,
∴,
該抽樣方法是系統(tǒng)抽樣;
(2)根據(jù)眾數(shù)是最高矩形底邊中點的橫坐標(biāo),即眾數(shù)的估計值為;
∵前三個小矩形的面積和為,
第四個小矩形的面積為,
∴中位數(shù)在第四組,設(shè)中位數(shù)為,則,解得,
∴數(shù)據(jù)的中位數(shù)為
(3)樣本中車速在有(輛),
∴估計該路段車輛超速的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,已知.
(1)求數(shù)列的通項公式;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù)f(x),若滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
(1)設(shè),判斷f(x)在上是否是有界函數(shù).若是,說明理由,并寫出f(x)所有上界的值的集合;若不是,也請說明理由.
(2)若函數(shù)g(x)=1+2x+a·4x在x∈[0,2]上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】司機在開機動車時使用手機是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機開車時使用手機的情況,交警部門調(diào)查了名機動車司機,得到以下統(tǒng)計:在名男性司機中,開車時使用手機的有人,開車時不使用手機的有人;在名女性司機中,開車時使用手機的有人,開車時不使用手機的有人.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認為開車時使用手機與司機的性別有關(guān);
開車時使用手機 | 開車時不使用手機 | 合計 | |
男性司機人數(shù) | |||
女性司機人數(shù) | |||
合計 |
(2)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨立,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
參考數(shù)據(jù):
參考公式
span>,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,河北等8省公布了高考改革綜合方案將采取“”模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門.為了更好進行生涯規(guī)劃,張明同學(xué)對高一一年來的七次考試成績進行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.
(1)若張明同學(xué)隨機選擇3門功課,求他選到物理政治兩門功課的概率;
(2)試根據(jù)莖葉圖分析張明同學(xué)應(yīng)在物理和歷史中選擇哪個學(xué)科?并闡述理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖像上一點處的切線方程為
(1)求的值;
(2)若方程在區(qū)間內(nèi)有兩個不等實根,求的取值范圍;
(3)令如果的圖像與軸交于兩點,的中點為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相交于不同的兩點A,B.
(Ⅰ)若α=,求線段AB中點M的坐標(biāo);
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長為的的菱形, ,四邊形是矩形,平面平面, , 和分別是和的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實數(shù),函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)定義在上的函數(shù)在點處的切線方程為,當(dāng)時,若在內(nèi)恒成立,則稱點為函數(shù)的“平衡點”.當(dāng)時,試問函數(shù)是否存在“平衡點”?若存在,請求出“平衡點”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com