精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長為的的菱形, ,四邊形是矩形,平面平面, , 分別是的中點.

)求證:平面平面;

)求二面角的大。

【答案】)證明見解析;

【解析】試題分析:第一問根據三角形的中位線找到平行線,利用面面平行的判定定理,在其中一個平面內找到和另一個平面平行的兩條相交直線,證得結果,第二問先在幾何體中找到共點的相互垂直的三條直線,建立相應的空間直角坐標系,求得面的法向量,利用面的法向量所成的角的余弦值判斷求得二面角的余弦值,結合二面角的取值范圍,求得二面角的大小.

試題解析:()證明:在中,因為分別是的中點,

所以, 又因為平面, 平面,

所以平面. 設,連接,

因為為菱形,所以中點

中,因為,

所以,

又因為平面, 平面,

所以平面. 又因為, 平面,

所以平面平面

)解:取的中點,連接,因為四邊形是矩形, 分別為的中點,

所以,因為平面平面,所以平面,

所以平面,因為為菱形,所以,得兩兩垂直.

所以以為原點, 所在直線分別為軸, 軸, 軸,如圖建立空間直角坐標系.

因為底面是邊長為的菱形, ,所以, , , , , .所以, .設平面的法向量為,則.令,得

平面,得平面的法向量為,則

所以二面角的大小為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,若互不相等的實數x1 , x2 , x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是(
A.( ]
B.(
C.( ]
D.(

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2=9,A(-5,0),直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;

(2)在直線OA上(O為坐標原點)存在定點B(不同于點A),滿足:對于圓C上任一點P,都有一常數,試求所有滿足條件的點B的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= (x>0),觀察:
f1(x)=f(x)= ,
f2(x)=f(f1(x))= ;
f3(x)=f(f2(x))=
f4(x)=f(f3(x))=

根據以上事實,當n∈N*時,由歸納推理可得:fn(1)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災,5.6萬人緊急轉移安置,288間房屋倒塌,46.5千公頃農田受災,直接經濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風的影響,適逢暑假,小明調查了梅州某小區(qū)的50戶居民由于臺風造成的經濟損失,將收集的數據分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖:
附:臨界值參考公式: ,n=a+b+c+d.

(1)試根據頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數據用該組區(qū)間的中點值作代表);
(2)小明向班級同學發(fā)出倡議,為該小區(qū)居民損款,現從損失超過4000元的居民中隨機抽出2戶進行捐款援助,投抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數學期望;
(3)臺風后區(qū)委會號召該小區(qū)居民為臺風重災區(qū)捐款,小明調查的50戶居民捐款情況如表,在表格空白外填寫正確數字,并說明是否有95%以上的把握認為捐款數額多于或少于500元和自身經濟損失是否到4000元有關?

經濟損失不超過4000元

經濟損失超過4000元

合計

捐款超過500元

30

損款不超過500元

6

合計

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知分別為橢圓C 的左、右焦點,點 在橢圓上,且 軸,的周長為6.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)E,F是橢圓C上異于點的兩個動點,如果直線PE與直線PF的傾斜角互補,證明:直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)已知點A(-1,-2),B(1,3),P為x軸上的一點,求|PA|+|PB|的最小值;

(2)已知點A(2,2),B(3,4),P為x軸上一點,求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在路邊安裝路燈,燈柱的高為米,路寬為23米,燈桿與燈柱角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直,請你建立適當直角坐標系,解決以下問題:

(1)當

(2)且燈罩軸線正好通過道路路面的中線時,求燈桿的長為多少米?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C上任意一點到的距離與到點 的距離之比均為.

(1)求曲線C的方程;

(2)設點,過點作兩條相異直線分別與曲線C相交于兩點,且直線和直線的傾斜角互補,求線段的最大值.

查看答案和解析>>

同步練習冊答案