【題目】已知函數(shù).
(1)若只有個正整數(shù)解,求的取值范圍;
(2)①求證:方程有唯一實根,且;
②求的最大值.
【答案】(1);(2)①見解析;②
【解析】
(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可知當時,取得極大值,又,計算可知,只需再比較與的大小,即可求出的取值范圍;
(2)①由方程可得,發(fā)現(xiàn)等式兩側(cè)結(jié)構(gòu)一致,可構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷單調(diào)性后可得,設(shè),再利用導(dǎo)數(shù)判斷單調(diào)性并結(jié)合零點存在性定理,即可得證;
② ,求導(dǎo)可得,結(jié)合①可判斷的單調(diào)性,進而可求出的最大值.
(1)因為,所以,令,得,
所以時,,是增函數(shù),
時,是減函數(shù),
所以當時,函數(shù)取得極大值,
因為,,又,
所以,又,
所以只有個正整數(shù)解為,,即的取值范圍是.
(2)①方程,即,
由得,,,
設(shè),則,且,,
因為,所以在上為增函數(shù),
所以,即
設(shè),則在為增函數(shù),且,,
所以存在唯一,使得,
即方程有唯一實根,且.
②,
則,
由①知有唯一零點,所以有唯一零點,
結(jié)合,,
可得時,,是增函數(shù),
時,是減函數(shù),
所以,
所以的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓:,點,,點在圓上,.
(1)求圓的方程;
(2)直線與圓交于,兩點(點在軸上方),點是拋物線上的動點,點為的外心,求線段長度的最大值,并求出當線段長度最大時,外接圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際上通常用年齡中位數(shù)指標作為劃分國家或地區(qū)人口年齡構(gòu)成的標準:年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個小球,直到標有偶數(shù)的球都取到過就停止.小明用隨機模擬的方法估計恰好在第4次停止摸球的概率,利用計算機軟件產(chǎn)生隨機數(shù),每1組中有4個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下21組隨機數(shù):由此可以估計恰好在第4次停止摸球的概率為( )
1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312
2412 1413 4331 2234 4422 3241 4331 4234
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為篩查在人群中傳染的某種病毒,現(xiàn)有兩種檢測方法:
(1)抗體檢測法:每個個體獨立檢測,每一次檢測成本為80元,每個個體收取檢測費為100元.
(2)核酸檢測法:先合并個體,其操作方法是:當個體不超過10個時,把所有個體合并在一起進行檢測.
當個體超過10個時,每10個個體為一組進行檢測.若該組檢測結(jié)果為陰性(正常),則只需檢測一次;若該組檢測結(jié)果為陽性(不正常),則需再對每個個體按核酸檢測法重新獨立檢測,共需檢測k+1次(k為該組個體數(shù),1≤k≤10,k∈N*).每一次檢測成本為160元.假設(shè)在接受檢測的個體中,每個個體的檢測結(jié)果是陽性還是陰性相互獨立,且每個個體是陽性結(jié)果的概率均為p(0<p<1).
(Ⅰ)現(xiàn)有100個個體采取抗體檢測法,求其中恰有一個檢測出為陽性的概率;
(Ⅱ)因大多數(shù)人群篩查出現(xiàn)陽性的概率很低,且政府就核酸檢測法給子檢測機構(gòu)一定的補貼,故檢測機構(gòu)推出組團選擇核酸檢測優(yōu)惠政策如下:無論是檢測一次還是k+1次,每組所有個體共收費700元(少于10個個體的組收費金額不變).已知某企業(yè)現(xiàn)有員工107人,準備進行全員檢測,擬準備9000元檢測費,由于時間和設(shè)備條件的限制,采用核酸檢測法合并個體的組數(shù)不得高于參加采用抗體檢測法人數(shù),請設(shè)計一個合理的的檢測安排方案;
(Ⅲ)設(shè),現(xiàn)有n(n∈N*且2≤n≤10)個個體,若出于成本考慮,僅采用一種檢測方法,試問檢測機構(gòu)應(yīng)采用哪種檢測方法?(ln3≈1.099,ln4≈1.386,ln5≈1.609,ln6≈1.792)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校高三大理班周三上午四節(jié)、下午三節(jié)有六門科目可供安排,其中語文和數(shù)學各自都必須上兩節(jié)而且兩節(jié)連上,而英語、物理、化學、生物最多上一節(jié),則不同的功課安排有________種情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在極坐系中,點繞極點順時針旋轉(zhuǎn)角得到點.以為原點,極軸為軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線繞逆時針旋轉(zhuǎn)得到曲線.
(1)求曲線的直角坐標方程;
(2)點的極坐標為,直線過點且與曲線交于兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們稱滿足: ()的數(shù)列為“級夢數(shù)列”.
(1)若是“級夢數(shù)列”且.求: 和的值;
(2)若是“級夢數(shù)列”且滿足, ,求的最小值;
(3)若是“0級夢數(shù)列”且,設(shè)數(shù)列的前項和為.證明: ().
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面內(nèi),已知,過直線,分別作平面,,使銳二面角為,銳二面角為,則平面與平面所成的銳二面角的余弦值為( ).
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com