【題目】已知函數(shù).

(1)若只有個正整數(shù)解,求的取值范圍;

(2)①求證:方程有唯一實根,且

②求的最大值.

【答案】(1);(2)①見解析;②

【解析】

(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可知當時,取得極大值,又,計算可知,只需再比較的大小,即可求出的取值范圍;

(2)①由方程可得,發(fā)現(xiàn)等式兩側(cè)結(jié)構(gòu)一致,可構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷單調(diào)性后可得,設(shè),再利用導(dǎo)數(shù)判斷單調(diào)性并結(jié)合零點存在性定理,即可得證;

,求導(dǎo)可得,結(jié)合①可判斷的單調(diào)性,進而可求出的最大值.

(1)因為,所以,令,得,

所以時,,是增函數(shù),

,是減函數(shù),

所以當時,函數(shù)取得極大值,

因為,,又,

所以,又,

所以只有個正整數(shù)解為,,即的取值范圍是.

(2)①方程,即,

,,,

設(shè),則,且,

因為,所以上為增函數(shù),

所以,即

設(shè),則為增函數(shù),且,

所以存在唯一,使得,

即方程有唯一實根,且.

,

由①知有唯一零點,所以有唯一零點,

結(jié)合,,

可得時,,是增函數(shù),

是減函數(shù),

所以,

所以的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓,點,,點在圓上,.

1)求圓的方程;

2)直線與圓交于兩點(點在軸上方),點是拋物線上的動點,點的外心,求線段長度的最大值,并求出當線段長度最大時,外接圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國際上通常用年齡中位數(shù)指標作為劃分國家或地區(qū)人口年齡構(gòu)成的標準:年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個小球,直到標有偶數(shù)的球都取到過就停止.小明用隨機模擬的方法估計恰好在第4次停止摸球的概率,利用計算機軟件產(chǎn)生隨機數(shù),每1組中有4個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下21組隨機數(shù):由此可以估計恰好在第4次停止摸球的概率為(

1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312

2412 1413 4331 2234 4422 3241 4331 4234

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為篩查在人群中傳染的某種病毒,現(xiàn)有兩種檢測方法:

1)抗體檢測法:每個個體獨立檢測,每一次檢測成本為80元,每個個體收取檢測費為100元.

2)核酸檢測法:先合并個體,其操作方法是:當個體不超過10個時,把所有個體合并在一起進行檢測.

當個體超過10個時,每10個個體為一組進行檢測.若該組檢測結(jié)果為陰性(正常),則只需檢測一次;若該組檢測結(jié)果為陽性(不正常),則需再對每個個體按核酸檢測法重新獨立檢測,共需檢測k+1次(k為該組個體數(shù),1≤k≤10kN*).每一次檢測成本為160元.假設(shè)在接受檢測的個體中,每個個體的檢測結(jié)果是陽性還是陰性相互獨立,且每個個體是陽性結(jié)果的概率均為p0p1).

(Ⅰ)現(xiàn)有100個個體采取抗體檢測法,求其中恰有一個檢測出為陽性的概率;

(Ⅱ)因大多數(shù)人群篩查出現(xiàn)陽性的概率很低,且政府就核酸檢測法給子檢測機構(gòu)一定的補貼,故檢測機構(gòu)推出組團選擇核酸檢測優(yōu)惠政策如下:無論是檢測一次還是k+1次,每組所有個體共收費700元(少于10個個體的組收費金額不變).已知某企業(yè)現(xiàn)有員工107人,準備進行全員檢測,擬準備9000元檢測費,由于時間和設(shè)備條件的限制,采用核酸檢測法合并個體的組數(shù)不得高于參加采用抗體檢測法人數(shù),請設(shè)計一個合理的的檢測安排方案;

(Ⅲ)設(shè),現(xiàn)有nnN*2≤n≤10)個個體,若出于成本考慮,僅采用一種檢測方法,試問檢測機構(gòu)應(yīng)采用哪種檢測方法?(ln3≈1.099,ln4≈1.386,ln5≈1.609,ln6≈1.792

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校高三大理班周三上午四節(jié)、下午三節(jié)有六門科目可供安排,其中語文和數(shù)學各自都必須上兩節(jié)而且兩節(jié)連上,而英語、物理、化學、生物最多上一節(jié),則不同的功課安排有________種情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在極坐系中,點繞極點順時針旋轉(zhuǎn)角得到點.為原點,極軸為軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線逆時針旋轉(zhuǎn)得到曲線.

1)求曲線的直角坐標方程;

2)點的極坐標為,直線過點且與曲線交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們稱滿足: )的數(shù)列為“級夢數(shù)列”.

(1)若是“級夢數(shù)列”且.求: 的值;

(2)若是“級夢數(shù)列”且滿足, ,求的最小值;

(3)若是“0級夢數(shù)列”且,設(shè)數(shù)列的前項和為.證明: ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi),已知,過直線,分別作平面,使銳二面角,銳二面角,則平面與平面所成的銳二面角的余弦值為( .

A.B.C.D.

查看答案和解析>>

同步練習冊答案