【題目】20171018日至1024日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱黨的“十九大”在北京召開一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問(wèn)卷調(diào)查,調(diào)查問(wèn)卷共有20個(gè)問(wèn)題,每個(gè)問(wèn)題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1,第2,第3,第4,第5,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).

求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;

求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);

若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.

【答案】(1)87.25;(2)3,2,;(3)

【解析】

(1)利用頻率分布直方圖的性質(zhì)能求出這100人的平均得分(2)3組的人數(shù)為30,第4組的人數(shù)為20,第5組的人數(shù)為10,用分層抽樣能求出在這三個(gè)組選取的人數(shù)(3)記其他人為甲、乙、丙、丁、戊、己,從這6人隨機(jī)選取2人,利用列舉法能寫出甲、乙、丙這3人至多有一人被選取的概率.

100人的平均得分為:

.

3組的人數(shù)為

4組的人數(shù)為,

5組的人數(shù)為,故共有60人,

用分層抽樣在這三個(gè)組選取的人數(shù)分別為:3,2,

記其他人為甲、乙、丙、丁、戊、己,

則所有選取的結(jié)果為甲、乙、甲、丙、甲、丁、甲、戊、甲、己、

乙、丙乙、丁乙、戊、乙、己、丙、丁、丙、戊、丙、己、

丁、戊、丁、己、戊、己15種情況,

其中甲、乙、丙這3人至多有一人被選取有12種情況,

故甲、乙、丙這3人至多有一人被選取的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn), 在圖中以表示.

)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 及乙組同學(xué)投籃命中次數(shù)的方差;

)在()的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲?/span>)分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)畫出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;

(2)若使用超過(guò)8年,維修費(fèi)用超過(guò)1.5萬(wàn)元時(shí),車主將處理掉該車,估計(jì)第10年年底時(shí),車主是否會(huì)處理掉該車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上.

1)求橢圓C的方程;

2)直線(m>0)與橢圓C有且僅有一個(gè)公共點(diǎn),且與x軸和y軸分別交于點(diǎn)M,N,當(dāng)△OMN面積取最小值時(shí),求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:

(1)長(zhǎng)軸長(zhǎng)是10,離心率是;

(2)在x軸上的一個(gè)焦點(diǎn),與短軸兩個(gè)端點(diǎn)的連線互相垂直,且焦距為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和,對(duì)任意正整數(shù),總存在正數(shù)使得, 恒成立:數(shù)列的前項(xiàng)和,且對(duì)任意正整數(shù), 恒成立.

(1)求常數(shù)的值;

(2)證明數(shù)列為等差數(shù)列;

(3)若,記 ,是否存在正整數(shù),使得對(duì)任意正整數(shù), 恒成立,若存在,求正整數(shù)的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知分別為橢圓的左、右焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn)和點(diǎn),其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線橢圓于另一點(diǎn),點(diǎn)在直線上,且.若,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案