【題目】已知數(shù)列的前項和,對任意正整數(shù),總存在正數(shù)使得, 恒成立:數(shù)列的前項和,且對任意正整數(shù), 恒成立.
(1)求常數(shù)的值;
(2)證明數(shù)列為等差數(shù)列;
(3)若,記 ,是否存在正整數(shù),使得對任意正整數(shù), 恒成立,若存在,求正整數(shù)的最小值,若不存在,請說明理由.
【答案】(1)(2)見解析(3)正整數(shù)的最小值為4
【解析】試題分析:(1)根據(jù), ,可得,根據(jù)題意令和,即可求出,從而求出;(2)由,得,兩式做差得,從而可證數(shù)列為等差數(shù)列;(3)根據(jù)(2)可得,結(jié)合(1),表示出,作出,然后令,即可求出的最大值,從而求出正整數(shù)的最小值.
試題解析:(1)∵①
∴②,,
①-②得: ,即, ,
又
∴, ,
時, ; 時, .
∵為正數(shù)
∴.
又∵, ,且
∴.
(2)∵③
∴當(dāng)時, ④,
∴③-④得: ,即⑤,
又∵⑥
∴⑤+⑥得: ,即
∴為等差數(shù)列.
(3)∵, ,由(2)知為等差數(shù)列
∴.
又由(1)知,
∴ ,
又∵ ,
∴ ,
令得,
∴,解得,
∴時, ,即,
∵時, ,
∴,即.
此時,即,
∴的最大值為
若存在正整數(shù),使得對任意正整數(shù), 恒成立,則,
∴正整數(shù)的最小值為4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,(且).
(1)求的值;
(2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請說明理由;
(3)設(shè)數(shù)列的前n項和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日至10月24日,中國共產(chǎn)黨第十九次全國代表大會簡稱黨的“十九大”在北京召開一段時間后,某單位就“十九大”精神的領(lǐng)會程度隨機抽取100名員工進行問卷調(diào)查,調(diào)查問卷共有20個問題,每個問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績都在內(nèi),按成績分成5組:第1組,第2組,第3組,第4組,第5組,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對“十九大”精神作深入學(xué)習(xí).
求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點值作代表;
求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);
若甲、乙、丙都被選取對“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機選取2人再全面考查他們對“十九大”精神的領(lǐng)會程度,求甲、乙、丙這3人至多有一人被選取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=4y.
(1)求拋物線在點P(2,1)處的切線方程;
(2)若不過原點的直線l與拋物線交于A,B兩點(如圖所示),且OA⊥OB,|OA|=|OB|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一圓的圓心在直線上,且該圓經(jīng)過和兩點.
(1)求圓的標準方程;
(2)若斜率為的直線與圓相交于,兩點,試求面積的最大值和此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面,,為的中點,是線段上的一動點.
(1)當(dāng)是線段的中點時,證明:平面;
(2)當(dāng)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,已知, , 是正三角形, , , 是的中點.
(1)求證: 平面;
(2)求證:平面平面;
(3)求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要測量底部不能到達的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD="40" m,則電視塔的高度為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com