已知圓的方程為,過點作圓的兩條切線,切點分別為、,直線恰好經(jīng)過橢圓的右頂點和上頂點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓垂直于軸的一條弦,所在直線的方程為是橢圓上異于、的任意一點,直線分別交定直線于兩點、,求證.
(Ⅰ)  (Ⅱ)聯(lián)立方程組表示出向量,再證.

試題分析:(Ⅰ) 觀察知,是圓的一條切線,切點為,
設(shè)為圓心,根據(jù)圓的切線性質(zhì),,
所以, 所以直線的方程為.
軸相交于,依題意,所求橢圓的方程為 
(Ⅱ) 橢圓方程為,設(shè)
則有,
在直線的方程中,令,整理得
           ①
同理,     ②
②,并將代入得
 
===.
=   
,∴

點評:本題考查直線與圓錐曲線的位置關(guān)系,考查橢圓的標準方程,考查數(shù)形結(jié)合思想,考查學生的運算能力、分析問題解決問題的能力,難度較大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,且經(jīng)過點,為橢圓上的動點,以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓軸有兩個交點,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程表示橢圓,則的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,橢圓的標準方程為,右焦點為,右準線為,短軸的一個端點. 設(shè)原點到直線的距離為,點到的距離為. 若,則橢圓的離心率為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形中,分別為四邊的中點,且都在坐標軸上,設(shè),

(Ⅰ)求直線的交點的軌跡的方程;
(Ⅱ)過圓上一點作圓的切線與軌跡交于兩點,若,試求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線所經(jīng)過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為8.則橢圓的標準方程為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
(Ⅰ)設(shè)橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線相交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點作直線交橢圓于兩點,是橢圓右焦點,則的周長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C:的上頂點坐標為,離心率為.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)P為橢圓上一點,A為左頂點,F(xiàn)為橢圓的右焦點,求的取值范圍.

查看答案和解析>>

同步練習冊答案