在平面直角坐標(biāo)系
中,橢圓
的標(biāo)準(zhǔn)方程為
,右焦點(diǎn)為
,右準(zhǔn)線為
,短軸的一個(gè)端點(diǎn)
. 設(shè)原點(diǎn)到直線
的距離為
,
點(diǎn)到
的距離為
. 若
,則橢圓
的離心率為
依題意,作
于
,則
,又
,解得
,而橢圓準(zhǔn)線
的方程為
,
,設(shè)直線
與
軸交于
,則點(diǎn)
到直線
的距離
,∵
,
∴
,整理的
,兩邊平方,
,∴
,又
,
解
得
.
【考點(diǎn)定位】橢圓的性質(zhì)、點(diǎn)到直線的距離公式,考查分析轉(zhuǎn)化能力、計(jì)算能力.中等題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的長軸長為4,且過點(diǎn)
.
(1)求橢圓
的方程;
(2)設(shè)
、
、
是橢圓上的三點(diǎn),若
,點(diǎn)
為線段
的中點(diǎn),
、
兩點(diǎn)的坐標(biāo)分別為
、
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在平面直角坐標(biāo)系
中,橢圓
的右焦點(diǎn)為
,離心率為
.
分別過
,
的兩條弦
,
相交于點(diǎn)
(異于
,
兩點(diǎn)),且
.
(1)求橢圓的方程;
(2)求證:直線
,
的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C的方程為
,其離心率為
,經(jīng)過橢圓焦點(diǎn)且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:
與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)AB是橢圓
的長軸,點(diǎn)C在
上,且
,若AB=4,
,則
的兩個(gè)焦點(diǎn)之間的距離為________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的右焦點(diǎn)
在圓
上,直線
交橢圓于
、
兩點(diǎn).
(1)求橢圓
的方程;
(2)若
(
為坐標(biāo)原點(diǎn)),求
的值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓的方程為
,過點(diǎn)
作圓的兩條切線,切點(diǎn)分別為
、
,直線
恰好經(jīng)過橢圓
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)
是橢圓
(
垂直于
軸的一條弦,
所在直線的方程為
且
是橢圓上異于
、
的任意一點(diǎn),直線
、
分別交定直線
于兩點(diǎn)
、
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的兩個(gè)焦點(diǎn)為
,點(diǎn)
在橢圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知點(diǎn)
,設(shè)點(diǎn)
是橢圓
上任一點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知橢圓
過點(diǎn)
,且離心率為
.
(1)求橢圓
的方程;
(2)
為橢圓
的左右頂點(diǎn),點(diǎn)
是橢圓
上異于
的動(dòng)點(diǎn),直線
分別交直線
于
兩點(diǎn).
證明:以線段
為直徑的圓恒過
軸上的定點(diǎn).
查看答案和解析>>