【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.問:在棱PD上是否存在一點(diǎn)E,使得CE∥平面PAB?若存在,求出E點(diǎn)的位置;若不存在,請說明理由.
【答案】見解析
【解析】
分別以AB,AD,AP所在直線為x,y,z軸建立空間直角坐標(biāo)系,設(shè)E(0,y,z),易知=(0,2,0)是平面PAB的法向量,利用,確定出E點(diǎn)的位置.
分別以AB,AD,AP所在直線為x,y,z軸建立空間直角坐標(biāo)系,如圖,則P(0,0,1),C(1,1,0),D(0,2,0),設(shè)E(0,y,z),則
=(0,y,z-1),=(0,2,-1).
∵∥,∴y(-1)-2(z-1)=0.①
∵=(0,2,0)是平面PAB的法向量,
=(-1,y-1,z),
∴由CE∥平面PAB,可得⊥.
∴(-1,y-1,z)·(0,2,0)=2(y-1)=0.
∴y=1,代入①式得z=.
∴E是PD的中點(diǎn),
即存在點(diǎn)E為PD中點(diǎn)時,CE∥平面PAB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.
(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;
(Ⅱ)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,為坐標(biāo)原點(diǎn),且,求使取得最小值的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)S為復(fù)數(shù)集C的非空子集.如果
(1)S含有一個不等于0的數(shù);
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,∈S,那么就稱S是一個數(shù)域.
現(xiàn)有如下命題:
①如果S是一個數(shù)域,則0,1∈S;
②如果S是一個數(shù)域,那么S含有無限多個數(shù);
③復(fù)數(shù)集是數(shù)域;
④S={a+b|a,b∈Q,}是數(shù)域;
⑤S={a+bi|a,b∈Z}是數(shù)域.
其中是真命題的有 (寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=+k(+lnx)(k為常數(shù)).
(1)當(dāng)k=0時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)k≥0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長AB=AD=2,AA1=3的長方體ABCDA1B1C1D1中,點(diǎn)E是平面BCC1B1上的動點(diǎn),點(diǎn)F是CD的中點(diǎn).試確定點(diǎn)E的位置,使D1E⊥平面AB1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半徑為1的圓O內(nèi)切于正方形ABCD,正六邊形EFGHPR內(nèi)接于圓O,當(dāng)EFGHPR繞圓心O旋轉(zhuǎn)時,的取值范圍是( )
A.[1﹣ , 1+]
B.[﹣1- , ﹣1+]
C.[﹣ , +]
D.[-﹣ , -+]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)軸正半軸為極軸的極坐標(biāo)系中,曲線
(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程為,其中滿足,若曲線與的公共點(diǎn)都在 上,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是 .
(Ⅰ)若袋中共有10個球,
(i)求白球的個數(shù);
(ii)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于 . 并指出袋中哪種顏色的球個數(shù)最少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com