【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為at為參數(shù)).O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθsinθ)=1.

1)當(dāng)t為參數(shù),α時(shí),判斷曲線C與直線l的位置關(guān)系;

2)當(dāng)α為參數(shù),t2時(shí),直線l與曲線C交于A,B兩點(diǎn),設(shè)P10),求的值.

【答案】1)平行;(2.

【解析】

1)先得到曲線C的普通方程,直線l的直角坐標(biāo)方程,它們的斜率相等,所以它們位置關(guān)系是平行.

2)先得到曲線C的普通方程,直線l的極坐標(biāo)方程,聯(lián)立得t1+t2,t1t2=﹣1,進(jìn)而得出結(jié)論.

解:(1)當(dāng)t為參數(shù),a,曲線C的參數(shù)方程為化簡(jiǎn)得

消掉參數(shù)得y,

因?yàn)橹本l的極坐標(biāo)方程為:ρcosθsinθ)=1,

化為直角坐標(biāo)方程為:y,

曲線C與直線l斜率相等,截距不相等,所以它們平行.

2)當(dāng)α為參數(shù),t2時(shí),曲線C的參數(shù)方程為:

化為普通方程得,

由(1)知直線l的斜率為,直線l過點(diǎn)P1,0

所以直線l的傾斜角為150°,

所以直線l的參數(shù)方程為:(為參數(shù)),即為參數(shù))

聯(lián)立直線l的參數(shù)方程與曲線C的普通方程得:

t2t10,

設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1t2

所以t1+t2,t1t2=﹣1

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,左頂點(diǎn)為,離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),,線段的中垂線為.若直線與直線相交于點(diǎn),與直線相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點(diǎn)的兩點(diǎn),所對(duì)應(yīng)的參數(shù)分別為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)當(dāng)時(shí),直線平分曲線,求的值;

2)當(dāng)時(shí),若,直線被曲線截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開始晚餐.為了計(jì)算晚報(bào)在晚餐開始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01,編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)7840中的78不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再?gòu)淖笙蛴易x第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)利用“五點(diǎn)法”畫出函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.

列表:

x

y

作圖:

(2)并說明該函數(shù)圖象可由的圖象經(jīng)過怎么變換得到的.

(3)求函數(shù)圖象的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測(cè)試中,客觀題難題的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度(.規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線焦點(diǎn)為,過上一點(diǎn)作切線,交軸于點(diǎn),過點(diǎn)作直線于點(diǎn).

1)證明:;

2)設(shè)直線,的斜率為,的面積為,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某處有一塊閑置用地,如圖所示,它的邊界由圓O的一段圓弧和兩條線段,構(gòu)成.已知圓心O在線段上,現(xiàn)測(cè)得圓O半徑為2百米,,.現(xiàn)規(guī)劃在這片閑置用地內(nèi)劃出一片梯形區(qū)域用于商業(yè)建設(shè),該梯形區(qū)域的下底為,上底為,點(diǎn)M在圓弧(點(diǎn)D在圓弧上,且)上,點(diǎn)N在圓弧上或線段.設(shè).

1)將梯形的面積表示為的函數(shù);

2)當(dāng)為何值時(shí),梯形的面積最大?求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案