【題目】如圖1在,分別為線段、的中點,,為折痕折起到圖2的位置,使平面⊥平面,連接,,設(shè)是線段上的動點,滿足

(1)證明:平面⊥平面;

(2)若二面角的大小為,的值

【答案】(1)證明見解析;(2).

【解析】

試題分析:(1)由已知得,平面,從而,由,得,由此能證明平面⊥平面;(2)為坐標原點,分別為,軸建立空間直角坐標系,求得平面一個法向量為,又知平面的法向量為,由此利用空間向量夾角余弦公式余弦公式能求出.

試題解析:(1)平面平面,

平面

,分別為中點,

,

在直角三角形,

可得,

平面,

平面,

平面⊥平面

(2)以為坐標原點,,分別為,,軸建立空間直角坐標系,

各點坐標分別為,,,,,

,,

,

設(shè)平面的法向量為,,

平面的法向量為,

,化為,解得,

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)

(1)為了了解工薪階層對工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應抽取的人數(shù);

(2)根據(jù)頻率分布直方圖估計這人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1時,求的單調(diào)區(qū)間;

2設(shè)是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍.

3設(shè)函數(shù)有兩個極值點,,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)定義域為,且對任意實數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域為,函數(shù)對任意恒成立,且對任意實數(shù),有,則稱為“對數(shù)形函數(shù)” .

(1)試判斷函數(shù)是否為“形函數(shù)”,并說明理由;

(2)若是“對數(shù)形函數(shù)”,求實數(shù)的取值范圍;

(3)若是“形函數(shù)”,且滿足對任意,有,問是否為“對數(shù)形函數(shù)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

1討論的單調(diào)性;

2若函數(shù)的圖象與直線交于兩點,線段中點的橫坐標為,證明: 為函數(shù)的導函數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸標準煤)的幾組對照數(shù)據(jù):

2

4

6

8

10

4

5

7

9

10

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)根據(jù)(1)中求出的線性回歸方程,預測生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標準煤?

附:回歸直線的斜率和截距的最小二乘估計分別為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若存在極值點,且,其中,求證: ;

(Ⅲ)設(shè),函數(shù),求證: 在區(qū)間上最大值不小于.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程.

已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,軸正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)若直線的極坐標方程為,求直線被曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】班主任為了對本班學生的考試成績進行分析,決定從全班名男同學, 名女同學中隨機抽取一個容量為的樣本進行分析.

(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出計算式即可,不必計算出結(jié)果)

(2)隨機抽取位,他們的數(shù)學分數(shù)從小到大排序是: ,物理分數(shù)從小到大排序是: .

①若規(guī)定分以上(包括分)為優(yōu)秀,求這位同學中恰有位同學的數(shù)學和物理分數(shù)均為優(yōu)秀的概率;

②若這位同學的數(shù)學、物理分數(shù)事實上對應如下表:

根據(jù)上表數(shù)據(jù),由變量的相關(guān)系數(shù)可知物理成績與數(shù)學成績之間具有較強的線性相關(guān)關(guān)系,現(xiàn)求的線性回歸方程(系數(shù)精確到).

參考公式:回歸直線的方程是: ,其中對應的回歸估計值,

參考數(shù)據(jù): , ,, ,.

查看答案和解析>>

同步練習冊答案