【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)設,是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍.
(3)設函數(shù)有兩個極值點,且,若恒成立,求實數(shù)的取值范圍.
【答案】(1) 的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;
(2);
(3).
【解析】
試題分析:(1)當時,,分別解不等式與可得函數(shù)的單調(diào)遞增區(qū)間與遞減區(qū)間;
(2)在上單調(diào)遞增,由在恒成立,求的范圍即可;(3)由是方程可得,,用表示得,令,則,構造函數(shù)(),求的導數(shù),研究其單調(diào)性得在上單減,∴,可求得.
試題解析: (1) ,
令,∴或,∴的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.
(2) 即,所以,令,∴在上單調(diào)遞增,∴,∴對恒成立,∴,∴對恒成立,又∵,當時取等號,∴,故.
(3),因為函數(shù)有兩個極值點,所以是方程的兩個根,即,所以是方程的兩個根,
所以有,,
∴
令,則,設(),
∴,
∴在上單減,∴,故.
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題:
①為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;
②四邊形為長方形,,,為中點,在長方形內(nèi)隨機取一點,取得的點到的距離大于1的概率為;
③把函數(shù)的圖象向右平移個單位,可得到的圖象;
④已知回歸直線的斜率的估計值為,樣本點的中心為,則回歸直線方程為.
其中正確的命題有__________.(填上所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)求所有的實數(shù),使得對任意時,函數(shù)的圖象恒在函數(shù)圖象的下方;
(3)若存在,使得關于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的長軸長是短軸長的倍,右焦點為,點分別是該橢圓的上、下頂點,點是直線上的一個動點(與軸交點除外),直線交橢圓于另一點,記直線, 的斜率分別為
(1)當直線過點時,求的值;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合與的關系,請用相關系數(shù)加以說明;
(Ⅱ)建立關于的回歸方程(系數(shù)精確到0.01),預測2016年我國生活垃圾無害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關系數(shù),
回歸方程, ,
本題中斜率和截距的最小二乘估計公式分別為: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1在△中,,、分別為線段、的中點,,.以為折痕,將△折起到圖2的位置,使平面⊥平面,連接,,設是線段上的動點,滿足.
(1)證明:平面⊥平面;
(2)若二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的方程為,點是拋物線上到直線距離最小的點,點是拋物線上異于點的點,直線與直線交于點,過點與軸平行的直線與拋物線交于點.
(Ⅰ)求點的坐標;
(Ⅱ)證明直線恒過定點,并求這個定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com