14.設(shè)向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足$|{\overrightarrow a}|=\sqrt{3}$,$|{\overrightarrow b}|=3\sqrt{3}$,若向量$\overrightarrow a在\overrightarrow b$方向上的投影為$\frac{{\sqrt{3}}}{2}$,且向量$\overrightarrow a-\overrightarrow c$與向量$\overrightarrow b-\overrightarrow c$的夾角為120°,則$|{\overrightarrow c}$|的最大值等于$2\sqrt{7}$.

分析 根據(jù)條件容易求出$\overrightarrow{a},\overrightarrow$的夾角為60°,然后作$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,結(jié)合條件從而得出∠AOB=60°,∠ACB=120°,這便說(shuō)明A,O,B,C四點(diǎn)共圓,從而可知OC為圓的直徑時(shí)$|\overrightarrow{c}|$最大,可設(shè)OC=c,結(jié)合圖形及條件即可表示出cos∠AOC,cos∠BOC,sin∠AOC,sin∠BOC,而∠AOC+∠BOC=60°,這樣根據(jù)兩角和的余弦公式即可得出關(guān)于c2的方程,解出c2,從而便得出$|\overrightarrow{c}|$的最大值.

解答 解:根據(jù)條件:
$|\overrightarrow{a}|•cos<\overrightarrow{a},\overrightarrow>=\sqrt{3}cos<\overrightarrow{a},\overrightarrow>=\frac{\sqrt{3}}{2}$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{1}{2}$;
∴$<\overrightarrow{a},\overrightarrow>=60°$;
如圖,作$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,則∠AOB=60°,∠ACB=120°;

∴A,O,B,C四點(diǎn)共圓;
∴OC為圓的直徑時(shí),$|\overrightarrow{c}|$最大;
設(shè)OC=c,則$BC=\sqrt{{c}^{2}-27},AC=\sqrt{{c}^{2}-3}$;
∴$cos∠AOC=\frac{\sqrt{3}}{c},cos∠BOC=\frac{3\sqrt{3}}{c}$,$sin∠AOC=\frac{\sqrt{{c}^{2}-3}}{c},sin∠BOC=\frac{\sqrt{{c}^{2}-27}}{c}$;
∴cos60°=cos(∠AOC+∠BOC)=$\frac{9}{{c}^{2}}-\frac{\sqrt{{c}^{2}-3}\sqrt{{c}^{2}-27}}{{c}^{2}}$=$\frac{1}{2}$;
解得c2=28;
∴$c=2\sqrt{7}$;
即$|\overrightarrow{c}|$的最大值等于$2\sqrt{7}$.
故答案為:$2\sqrt{7}$.

點(diǎn)評(píng) 考查投影的定義及計(jì)算公式,向量減法的幾何意義,四點(diǎn)共圓的概念,以及兩角和的余弦公式,三角函數(shù)的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過(guò)點(diǎn)(1,1),若對(duì)任意的實(shí)數(shù)m,直線l被圓C截得的弦長(zhǎng)都是定值,則直線l的方程為2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=ex-x.
(1)討論f(x)的單調(diào)性;
(2)若對(duì)?x≥0,恒有f(x)≥ax2+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.函數(shù)y=sin(2x+$\frac{π}{4}$)
(1)求A,ω,φ的值;  
(2)求x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=acos({2x+\frac{π}{3}})-b$(a>0)的最大值為3,最小值為-1.
(1)求a,b的值;
(2)求當(dāng)$x∈[{\frac{π}{4},\frac{7π}{12}}]$時(shí),函數(shù)$g(x)=2bsin({2ax-\frac{π}{6}})+1$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.為了調(diào)查市民對(duì)某活動(dòng)的認(rèn)可程度,研究人員對(duì)其所在地區(qū)年齡在10~60歲間的n位市民作出調(diào)查,并將統(tǒng)計(jì)結(jié)果繪制成頻率分布直方圖如圖所示,若被調(diào)查的年齡在20~30歲間的市民有480人,則可估計(jì)被調(diào)查的年齡在40~50歲間的市民有320人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù) f( x)=a-$\frac{1}{{2}^{x}+1}$( x∈R).
(1)若 f( x)為奇函數(shù),求 a的值;
(2)在(1)的條件下,求 f( x)在區(qū)間[1,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解答下列問(wèn)題:
(1)求2sin405°tan(-120°)+3cos315°tan210°;
(2)已知sinα=$\frac{1}{2}$,tanα>0,求$\frac{(2+co{s}^{2}α)(2-si{n}^{2}α)}{2+3ta{n}^{2}α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),A,B是圓(x+c)2+y2=4c2與C位于x軸上方的兩個(gè)交點(diǎn),且F1A∥F2B,則雙曲線C的離心率為$\frac{3+\sqrt{17}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案