2.函數(shù)y=sin(2x+$\frac{π}{4}$)
(1)求A,ω,φ的值;  
(2)求x∈[0,$\frac{π}{2}$]的值域.

分析 (1)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì),得出振幅A、ω和初相φ的值; 
(2)求x∈[0,$\frac{π}{2}$]時(shí)2x+$\frac{π}{4}$的取值范圍,得出sin(2x+$\frac{π}{4}$)的取值范圍即可.

解答 解:(1)函數(shù)y=sin(2x+$\frac{π}{4}$)中,
振幅A=2,ω=2,初相φ=$\frac{π}{4}$;  
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),
2x∈[0,π],2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴sin(2x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
即f(x)的值域是[-$\frac{\sqrt{2}}{2}$,1].

點(diǎn)評(píng) 本題考查了函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在中學(xué)生測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
等級(jí)優(yōu)秀合格尚待改進(jìn)
頻數(shù)15x5
表1:男生
等級(jí)優(yōu)秀合格尚待改進(jìn)
頻數(shù)153y
表2:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下邊2×2列聯(lián)表,試采用獨(dú)立性檢驗(yàn)進(jìn)行分析,能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
 男生女生總計(jì)
優(yōu)秀   
非優(yōu)秀   
總計(jì)   
參考數(shù)據(jù)與公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2>k00.050.050.01
K02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+alnx(a∈R)$.
(1)當(dāng)a<0時(shí),求f(x)的極值;
(2)令g(x)=f(x)-(a+1)x,a∈(1,e],證明:對(duì)任意x1,x2∈[1,a],恒有|g(x1)-g(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.用一邊長(zhǎng)為1米,另一邊長(zhǎng)為a(0<a≤1)米的矩形鐵皮做一個(gè)無(wú)蓋的容器,先在四角分別截去一個(gè)長(zhǎng)為x的小正方形,然后把四邊翻折90°角,再焊接而成,設(shè)該容器的容積為f(x).
(1)求f(x)的表達(dá)式,并寫(xiě)出它的定義域;
(2)求容器的容積的最值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,a=4,b=2$\sqrt{6},B={60°}$,則此三角形解的情況是( 。
A.一解或兩解B.兩解C.一解D.無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)fn(x)=a1x+a2x2+…+anxn,fn(-1)=(-1)n•n(n∈N*),則fn($\frac{1}{3}$)與1的大小為(  )
A.fn($\frac{1}{3}$)>1B.fn($\frac{1}{3}$)=1C.fn($\frac{1}{3}$)<1D.與n的大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿(mǎn)足$|{\overrightarrow a}|=\sqrt{3}$,$|{\overrightarrow b}|=3\sqrt{3}$,若向量$\overrightarrow a在\overrightarrow b$方向上的投影為$\frac{{\sqrt{3}}}{2}$,且向量$\overrightarrow a-\overrightarrow c$與向量$\overrightarrow b-\overrightarrow c$的夾角為120°,則$|{\overrightarrow c}$|的最大值等于$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.為了適應(yīng)市場(chǎng)需要,某地準(zhǔn)備建一個(gè)圓形生豬儲(chǔ)備基地(如圖),它的附近有一條公路,從基地中心O處向東走1km是儲(chǔ)備基地的邊界上的點(diǎn)A,接著向東再走7km到達(dá)公路上的點(diǎn)B;從基地中心O向正北走8km到達(dá)公路的另一點(diǎn)C.現(xiàn)準(zhǔn)備在儲(chǔ)備基地的邊界上選一點(diǎn)D,修建一條由D通往公路BC的專(zhuān)用線DE,求DE的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn,且Sn,an,1成等差數(shù)列,則an=2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案