曲線C1與曲線C2y=1-(x+1)2的公共點個數(shù)是( )

  A0      B1      C2      D3

答案:D
解析:

  ∴ y=±1,代入②中,

  當y=1時,得x=-1

  當y=-1時,得x=-1±

  故兩曲線有3個公共點,即選D


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,曲線C1的參數(shù)方程為
x=4cosθ
y=2sinθ
(θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)設曲線C1與x軸的一個交點的坐標為P(m,0)(m>0),經(jīng)過點P作曲線C2的切線l,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年寧夏、海南卷)(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

已知曲線C1,曲線C2。

(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);

(2)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線,。寫出,的參數(shù)方程。公共點的個數(shù)和C1與C2公共點的個數(shù)是否相同?

說明你的理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南漣源市漣源一中第二學期高二期末考試 題型:解答題

已知曲線C1,曲線C2

(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線.寫出,的參數(shù)方程.公共點的個數(shù)和C1與C2公共點的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆福建省高考模擬試題(1) 題型:解答題

(1)(本小題滿分7分) 選修4一2:矩陣與變換
若點A(2,2)在矩陣對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.
(2)(本小題滿分7分) 選修4一4:坐標系與參數(shù)方程
已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1與曲線C2(t∈R)交于A、B兩點.求證:OA⊥OB.
(3)(本小題滿分7分) 選修4一5:不等式選講
求證:,.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆湖南漣源市第二學期高二期末考試 題型:解答題

已知曲線C1,曲線C2

 

(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);

(2)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線,.寫出的參數(shù)方程.公共點的個數(shù)和C1與C2公共點的個數(shù)是否相同?說明你的理由.

 

查看答案和解析>>

同步練習冊答案