3.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,3),則$|{2\overrightarrow a+\overrightarrow b}|$的值為7.

分析 求出向量坐標(biāo),利用模的求法公式求解即可.

解答 解:向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,3),則$|{2\overrightarrow a+\overrightarrow b}|$=|(0,7)|=7.
故答案為:7.

點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算,模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.?dāng)?shù)列1,2,3,4,…,n的前n項(xiàng)和Sn=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.2016年,某廠計(jì)劃生產(chǎn)某種產(chǎn)品,已知生產(chǎn)該產(chǎn)品的總成本y(萬元)與總產(chǎn)量x(噸)之間的關(guān)系可表示為y=$\frac{x^2}{10}$-2x+90.
(1)當(dāng)x=40時(shí),求該產(chǎn)品每噸的生產(chǎn)成本;
(2)若該產(chǎn)品每噸的出廠價(jià)為6萬元,求該廠2016年獲得利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在空間直角坐標(biāo)系中,點(diǎn)P(-2,1,4)關(guān)于xOy平面對(duì)稱的點(diǎn)P1的坐標(biāo)是(-2,1,-4);點(diǎn)A(1,0,2)關(guān)于點(diǎn)P對(duì)稱的點(diǎn)P2的坐標(biāo)是(-5,2,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x∈N|x>1},B={x|x2<9}則A∩B等于( 。
A.{2}B.{2,3}C.(-3,1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的方程為4ρcosθ-ρsinθ-25=0,曲線W:$\left\{\begin{array}{l}{x=2t}\\{y={t}^{2}-1}\end{array}\right.$(t是參數(shù)).
(1)求直線l的直角坐標(biāo)方程與曲線W的普通方程;
(2)若點(diǎn)P在直線l上,Q在曲線W上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.當(dāng)實(shí)數(shù)m為何值時(shí),$z=\frac{{{m^2}-m-6}}{m+3}+({m^2}+5m+6)•i$,
(1)為實(shí)數(shù);  
(2)為虛數(shù);   
(3)為純虛數(shù);  
(4)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過(1,1)的直線l與雙曲線${x^2}-\frac{y^2}{3}=1$有且僅有一個(gè)公共點(diǎn)的直線有(  )條.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.甲、乙兩人同時(shí)應(yīng)聘一個(gè)工作崗位,若甲、乙被應(yīng)聘的概率分別為0.5和0.6,兩人被聘用是相互獨(dú)立的,則甲、乙兩人中最多有一人被聘用的概率為0.7.

查看答案和解析>>

同步練習(xí)冊(cè)答案