6.三位老師和三位學(xué)生站成一排,要求任何兩位學(xué)生都不相鄰,則不同的排法總數(shù)為( 。
A.720B.144C.36D.12

分析 根據(jù)題意,分2步進(jìn)行分析:①、先將三位老師全排列,分析排好后的空位情況,②、在4個(gè)空位中任選3個(gè),安排三位學(xué)生,由排列數(shù)公式計(jì)算可得每一步的排法數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2步進(jìn)行分析:
①、先將三位老師全排列,有A33=6種順序,排好后,有4個(gè)空位;
②、在4個(gè)空位中任選3個(gè),安排三位學(xué)生,有A43=24種情況,
則不同的排法有24×6=144種;
故選:B.

點(diǎn)評(píng) 本題考查排列、組合的實(shí)際應(yīng)用,注意分步分析,滿足題意中“任何兩位學(xué)生都不相鄰”的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.物體運(yùn)動(dòng)方程為$S=\frac{1}{4}{t^4}-3$,則t=2時(shí)瞬時(shí)速度為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知中心在坐標(biāo)原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)與拋物線y=-$\frac{1}{4}$x2的焦點(diǎn)重合,且雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.P為拋物線x2=-4y上一點(diǎn),A(2$\sqrt{2}$,0),則P到此拋物線的準(zhǔn)線的距離與P到點(diǎn)A的距離之和的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓x2+y2-10x+24=0的圓心是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的一個(gè)焦點(diǎn),則此雙曲線的漸近線方程為(  )
A.$y=±\frac{4}{3}x$B.$y=±\frac{3}{4}x$C.$y=±\frac{3}{5}x$D.$y=±\frac{4}{5}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個(gè)類比中,正確得個(gè)數(shù)為( 。
(1)若一個(gè)偶函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為奇函數(shù),將此結(jié)論類比到奇函數(shù)的結(jié)論為:若一個(gè)奇函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為偶函數(shù).
(2)若雙曲線的焦距是實(shí)軸長的2倍,則此雙曲線的離心率為2.將此結(jié)論類比到橢圓的結(jié)論為:若橢圓的焦距是長軸長的一半,則此橢圓的離心率為$\frac{1}{2}$.
(3)若一個(gè)等差數(shù)列的前3項(xiàng)和為1,則該數(shù)列的第2項(xiàng)為$\frac{1}{3}$.將此結(jié)論類比到等比數(shù)列的結(jié)論為:若一個(gè)等比數(shù)列的前3項(xiàng)積為1,則該數(shù)列的第2項(xiàng)為1.
(4)在平面上,若兩個(gè)正三角形的邊長比為1:2,則它們的面積比為1:4,將此結(jié)論類比到空間中的結(jié)論為:在空間中,若兩個(gè)正四面體的棱長比為1:2,則它們的體積比為1:8.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\sqrt{3}cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=1.
(Ⅰ)分別寫出C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線l的極坐標(biāo)方程θ=$\frac{π}{3}$(ρ≥0),且l分別交曲線C1、C2于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,則實(shí)數(shù)λ的取值范圍為[14,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinx-cosx=$\frac{1}{5}$,0≤x≤π,則sin(2x+$\frac{π}{4}$)的值為$\frac{17\sqrt{2}}{50}$.

查看答案和解析>>

同步練習(xí)冊答案