【題目】如圖,正方形的邊長為,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(Ⅰ)證明:平面平面;
(Ⅱ)若是的中點(diǎn),,求二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ)
【解析】
(Ⅰ)取AC中點(diǎn)O,連結(jié)PO,BO.推導(dǎo)出PO⊥AC,PO⊥OB,從而PO⊥面ABC,由此能證明面PAC⊥面ABC;
(Ⅱ)以為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量和面的一個(gè)法向量,利用夾角公式求解即可.
解:(Ⅰ)證明:取AC中點(diǎn)O,連結(jié)PO,BO.
因?yàn)?/span>PC=PA,所以PO⊥AC,
在中,PO=OB=AC=2,PB=PA=,
則,
所以PO⊥OB,
又AC∩OB=O,且AC、OB面ABC,所以PO⊥面ABC,
又PO面PAC,所以面PAC⊥面ABC;
(Ⅱ)由(Ⅰ)可得兩兩垂直,則以為坐標(biāo)原點(diǎn),以為軸,軸,軸建立空間直角坐標(biāo)系,如圖:
則,
,
設(shè)面的一個(gè)法向量為,
則,令,則,即,
又面的一個(gè)法向量為,
則,
又由于二面角為銳角,
則二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為,,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)過原點(diǎn)作直線的垂線,垂足為,交曲線于另一點(diǎn),當(dāng)變化時(shí),求的面積的最大值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,e為自然對數(shù)的底數(shù).
(1)若,且當(dāng)時(shí),總成立,求實(shí)數(shù)a的取值范圍;
(2)若,且存在兩個(gè)極值點(diǎn),,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:
方案1:運(yùn)走設(shè)備,此時(shí)需花費(fèi)4000元;
方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56000元;
方案3:不采取措施,此時(shí),當(dāng)兩河流都發(fā)生洪水時(shí)損失達(dá)60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.
(1)試求方案3中損失費(fèi)X(隨機(jī)變量)的分布列;
(2)試比較哪一種方案好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線()上的兩個(gè)動點(diǎn)和,焦點(diǎn)為F.線段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線的焦點(diǎn)F的距離之和為8.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若線段AB的垂直平分線與x軸交于點(diǎn)C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),有下列四個(gè)結(jié)論:
①為偶函數(shù);②的值域?yàn)?/span>;
③在上單調(diào)遞減;④在上恰有8個(gè)零點(diǎn),
其中所有正確結(jié)論的序號為( )
A.①③B.②④C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①函數(shù)的圖象把圓的面積兩等分;
②是周期為的函數(shù);
③函數(shù)在區(qū)間上有個(gè)零點(diǎn);
④函數(shù)在區(qū)間上單調(diào)遞減.
則正確結(jié)論的序號為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn)為曲線上的動點(diǎn),求線段的中點(diǎn)到直線的距離的最大值.并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com