【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點且傾斜角為,以原點為極點,軸的正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)過原點作直線的垂線,垂足為交曲線于另一點,當變化時,求的面積的最大值及相應(yīng)的的值.

【答案】1;(2)當時,面積取最大值.

【解析】

1)將曲線的參數(shù)方程化為普通方程,然后由可將曲線的普通方程化為極坐標方程;

2)由題意可得出直線的極坐標方程為,將直線的極坐標方程與曲線的極坐標方程聯(lián)立,求得,并求出、,可得出關(guān)于的表達式,并利用三角恒等變換思想化簡,結(jié)合正弦函數(shù)的基本性質(zhì)可求得面積的最大值及其對應(yīng)的的值.

1)曲線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標方程為,即

根據(jù)轉(zhuǎn)換為極坐標方程為;

2)由題意知直線的極坐標方程為,

聯(lián)立直線與曲線的極坐標方程得,所以.

,,所以.

所以

,

時,即時,面積取最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】代表紅球,代表藍球,代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由的展開式表示出來,如:“1”表示一個球都不取、“”表示取出一個紅球,而“”用表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個有區(qū)別的紅球、5個無區(qū)別的藍球、5個無區(qū)別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(甲),是邊長為的等邊三角形,點分別為的中點,將沿折成四棱錐,使,如圖(乙).

1)求證:平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某藥業(yè)公司統(tǒng)計了2010-2019年這10年某種疾病的患者人數(shù),結(jié)論如下:該疾病全國每年的患者人數(shù)都不低于100萬,其中有3年的患者人數(shù)低于200萬,有6年的患者人數(shù)不低于200萬且低于300萬,有1年的患者人數(shù)不低于300.

1)藥業(yè)公司為了解一新藥品對該疾病的療效,選擇了200名患者,隨機平均分為兩組作為實驗組和對照組,實驗結(jié)束時,有顯著療效的共110人,實驗組中有顯著療效的比率為70.請完成如下的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99.9%把握認為該藥品對該疾病有顯著療效;

實驗組

對照組

合計

有顯著療效

無顯著療效

合計

200

2)藥業(yè)公司最多能引進3條新藥品的生產(chǎn)線,據(jù)測算,公司按如下條件運行生產(chǎn)線:

該疾病患者人數(shù)(單位:萬)

最多可運行生產(chǎn)線數(shù)

1

2

3

每運行一條生產(chǎn)線,可產(chǎn)生年利潤6000萬元,沒運行的生產(chǎn)線毎條每年要虧損1000萬元.根據(jù)該藥業(yè)公司這10年的統(tǒng)計數(shù)據(jù),將患者人數(shù)在以上三段的頻率視為相應(yīng)段的概率、假設(shè)各年的患者人數(shù)相互獨立.欲使該藥業(yè)公司年總利潤的期望值達到最大,應(yīng)引進多少條生產(chǎn)線?

附:參考公式:,其中.

0.05

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sna11,且4Sn3Sn+1,2Sn+2成等差數(shù)列.

1)求{an}的通項公式;

2)若數(shù)列{bn}滿足b10bn+1bn1,設(shè)cn,求數(shù)列{cn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l3x+4y+m=0,圓Cx2+y24x+2=0,則圓C的半徑r=_____;若在圓C上存在兩點A,B,在直線l上存在一點P,使得∠APB=90°,則實數(shù)m的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】端午節(jié)是我國民間為紀念愛國詩人屈原的一個傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機問卷調(diào)查了該市1000名消費者在去年端午節(jié)期間的粽子購買量(單位:克),所得數(shù)據(jù)如下表所示:

購買量

人數(shù)

100

300

400

150

50

將煩率視為概率

1)試求消費者粽子購買量不低于300克的概率;

2)若該市有100萬名消費者,請估計該市今年在端午節(jié)期間應(yīng)準備多少千克棕子才能滿足市場需求(以各區(qū)間中點值作為該區(qū)間的購買量).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是t為參數(shù)),直線l與曲線C相交于A,B兩點.

1)求的長;

2)求點A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,以為折痕把折起,使點到達點的位置,且.

(Ⅰ)證明:平面平面;

(Ⅱ)若的中點,,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案