【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.

【答案】
(1)解:∵f(x)的圖象與h(x)關于A(0,1)對稱,設f(x)圖象上任意一點坐標為B(x,y),

其關于A(0,1)對稱點B′(x′,y′).

,∴ ,

∵B′(x′,y′)在h(x)上,∴y′=x′+ +2.

∴2﹣y=﹣x﹣ +2,即y=x+ ,

則f(x)=x+


(2)解:g(x)=f(x)x+ax=(x+ )x=x2+ax+1,

其對稱軸方程為x=﹣ ,

∵g(x)在[0,2]上為減函數(shù),

∴﹣ ≥2,即a≤﹣4,

∴a的取值范圍為(﹣∞,﹣4]


【解析】(1)由已知利用點的對稱得出點B的坐標,再利用點B在h(x)上得出其函數(shù)關系式。(2)整理g(x)的解析式得到關于x的二次函數(shù),根據(jù)已知限制對稱軸在指定區(qū)間的右側,進而得到a的取值范圍。
【考點精析】解答此題的關鍵在于理解函數(shù)的圖象的相關知識,掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值,以及對函數(shù)單調性的判斷方法的理解,了解單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x3+x2
(1)求f(x)在R上的解析式;
(2)當x∈[m,n](0<m<n)時,若f(x)的值域為[3m2+2m﹣1,3n2+2n﹣1],求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是 .假設兩人射擊是否擊中目標,相互之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標的概率;
(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率;
(3)假設某人連續(xù)2次未擊中目標,則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且sinA+ cosA=2.
(Ⅰ)求角A的大;
(Ⅱ)現(xiàn)給出三個條件:①a=2;②B=45°;③c= b.試從中選出兩個可以確△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只寫出一個方案即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調遞減,給出以下四個命題:
①f(2)=0;
②x=﹣4為函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[8,10]單調遞增;
④若方程f(x)=m在[﹣6,﹣2]上的兩根為x1 , x2 , 則x1+x2=﹣8.
上述命題中所有正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個單位,得到一個偶函數(shù)的圖象,則φ的一個可能取值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領海的分界線,一艘巡邏艇在O處發(fā)現(xiàn)了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點的軌跡;
(2)若O與公海的最近距離20海里,要保證在領海內捕獲走私船(即不能截獲走私船的區(qū)域與公海不想交).則O,A之間的最遠距離是多少海里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀材料:根據(jù)兩角和與差的正弦公式,有: sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①
sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②
由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos
(1)利用上述結論,試求sin15°+sin75°的值;
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA﹣cosB=﹣2sin cos

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對任意的x∈D,均有g(x)≤f(x)≤h(x)成立,則稱函數(shù)f(x)為函數(shù)g(x)到函數(shù)h(x)在區(qū)間D上的“任性函數(shù)”.已知函數(shù)f(x)=kx,g(x)=x2﹣2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在區(qū)間[1,e]上的“任性函數(shù)”,則實數(shù)k的取值范圍是

查看答案和解析>>

同步練習冊答案