【題目】閱讀材料:根據(jù)兩角和與差的正弦公式,有: sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①
sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②
由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos
(1)利用上述結(jié)論,試求sin15°+sin75°的值;
(2)類(lèi)比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA﹣cosB=﹣2sin cos

【答案】
(1)解:∵sinA+sinB=2sin cos ,

∴sin15°+cos75°=2sin cos ,

=2sin45°cos(﹣30°)= ,

∴sin15°+cos75°=


(2)證明:因?yàn)閏os(α+β)=cosαcosβ﹣sinαsinβ,﹣﹣﹣﹣﹣﹣①

cos(α﹣β)=cosαcosβ+sinαsinβ﹣﹣﹣﹣﹣﹣②

①+②得cos(α+β)+cos(α﹣β)=2cosαcosβ,③

令α+β=A,α﹣β=B 有α= ,β=

代入③得:cosA﹣cosB=﹣2sin cos

∴cosA﹣cosB=﹣2sin cos


【解析】(1)令A(yù)=15°,B=75°,代和可得sin15°+sin75°的值;(2)由cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ兩式相加得:cos(α+β)+cos(α﹣β)=2cosαcosβ,令α+β=A,α﹣β=B 有α= ,β= ,可得結(jié)論;
【考點(diǎn)精析】掌握類(lèi)比推理是解答本題的根本,需要知道根據(jù)兩類(lèi)不同事物之間具有某些類(lèi)似(或一致)性,推測(cè)其中一類(lèi)事物具有與另外一類(lèi)事物類(lèi)似的性質(zhì)的推理,叫做類(lèi)比推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿(mǎn)足f(x)=8+ (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿(mǎn)足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問(wèn)該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(1)求f(x)的解析式;
(2)若g(x)=f(x)x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某樂(lè)隊(duì)參加一戶(hù)外音樂(lè)節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂(lè)隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂(lè)隊(duì)的互動(dòng)指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂(lè)隊(duì)的互動(dòng)指數(shù)為2a,求觀眾與樂(lè)隊(duì)的互動(dòng)指數(shù)之和X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《聊齋志異》中有這樣一首詩(shī):“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無(wú)所阻,額上墳起終不悟.”在這里,我們稱(chēng)形如以下形式的等式具有“穿墻術(shù)”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術(shù)”,則n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點(diǎn)個(gè)數(shù)是(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=4 ,AD=2 ,將△ABD沿BD折起,使得點(diǎn)A折起至A′,設(shè)二面角A′﹣BD﹣C的大小為θ.

(1)當(dāng)θ=90°時(shí),求A′C的長(zhǎng);
(2)當(dāng)cosθ= 時(shí),求BC與平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿(mǎn)足g(x)=﹣1的x有四個(gè),則t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)實(shí)數(shù)x,y滿(mǎn)足 時(shí),1≤ax+y≤4恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案