【題目】已知(m,n為常數(shù)),在處的切線方程為.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若任意,使得對任意上恒有成立,求實數(shù)a的取值范圍;
(Ⅲ)若有兩個不同的零點,求證: .
【答案】(Ⅰ) ,x∈(0,+∞);(Ⅱ) ;(Ⅲ)證明見解析.
【解析】試題分析:
(Ⅰ)由題意利用導(dǎo)函數(shù)研究切線方程可得,x∈(0,+∞);
(Ⅱ)結(jié)合(Ⅰ)的結(jié)論,f(x)在上的最小值為f(1)=1,故只需對恒成立,構(gòu)造函數(shù),結(jié)合新函數(shù)的性質(zhì)可得a的取值范圍為。
試題解析:
(Ⅰ),由條件可得及在處的切線方程為,得,所以,x∈(0,+∞)。
(Ⅱ)由(Ⅰ)知f(x)在上單調(diào)遞減,∴f(x)在上的最小值為f(1)=1,故只需t3﹣t2﹣2at+2≤1,即對恒成立,令,易得m(t)在單調(diào)遞減,[1,2]上單調(diào)遞增,而 ∴∴,即a的取值范圍為。
(Ⅲ)∵,不妨設(shè)x1>x2>0,∴g(x1)=g(x2)=0,∴,兩式相加相減后作商得: ,要證,即證明lnx1+lnx2>2,即證: ,需證明成立,令,于是要證明: ,構(gòu)造函數(shù), ,故在(1,+∞)上是增函數(shù),∴,∴,故原不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,橢圓: 的離心率是,且直線: 被橢圓截得的弦長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與圓: 相切:
(i)求圓的標準方程;
(ii)若直線過定點,與橢圓交于不同的兩點、,與圓交于不同的兩點、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的滿足,前項的和為,且.
(1)求的值;
(2)設(shè),證明:數(shù)列是等差數(shù)列;
(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當時,求證:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦“中國詩詞大賽”活動,某班派出甲乙兩名選手同時參加比賽. 大賽設(shè)有15個詩詞填空題,其中“唐詩”、“宋詞”和“毛澤東詩詞”各5個.每位選手從三類詩詞中各任選1個進行作答,3個全答對選手得3分,答對2個選手得2分,答對1個選手得1分,一個都沒答對選手得0分. 已知“唐詩”、“宋詞”和“毛澤東詩詞”中甲能答對的題目個數(shù)依次為5,4,3,乙能答對的題目個數(shù)依此為4,5,4,假設(shè)每人各題答對與否互不影響,甲乙兩人答對與否也互不影響.
求:(1)甲乙兩人同時得到3分的概率;
(2)甲乙兩人得分之和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
參考公式與臨界值表: .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點.
(I)求曲線的直角坐標方程,并說明它是什么曲線;
(II)設(shè)定點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求的值.
(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值,及相應(yīng)的的值.
(Ⅲ)求函數(shù)在區(qū)間的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com