【題目】已知m,n為常數(shù)),在處的切線方程為.

)求的解析式并寫出定義域;

)若任意,使得對任意上恒有成立,求實數(shù)a的取值范圍;

)若有兩個不同的零點,求證: .

【答案】(Ⅰ) ,x0,+∞);(Ⅱ) ;(Ⅲ)證明見解析.

【解析】試題分析:

()由題意利用導(dǎo)函數(shù)研究切線方程可得,x∈(0,+∞);

()結(jié)合(Ⅰ)的結(jié)論,fx)在上的最小值為f1=1,故只需恒成立,構(gòu)造函數(shù),結(jié)合新函數(shù)的性質(zhì)可得a的取值范圍為。

試題解析:

,由條件可得及在處的切線方程為,得,所以x0,+∞)。

Ⅱ)由(Ⅰ)知fx)在上單調(diào)遞減,fx)在上的最小值為f1=1,故只需t3t22at+2≤1,即恒成立,令,易得mt)在單調(diào)遞減,[1,2]上單調(diào)遞增,而 ,即a的取值范圍為

,不妨設(shè)x1x20gx1=gx2=0,,兩式相加相減后作商得: ,要證,即證明lnx1+lnx22,即證: ,需證明成立,令,于是要證明: ,構(gòu)造函數(shù), ,故在(1+∞)上是增函數(shù),,,故原不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率是,且直線 被橢圓截得的弦長為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若直線與圓 相切:

(i)求圓的標準方程;

(ii)若直線過定點,與橢圓交于不同的兩點、,與圓交于不同的兩點、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的滿足,前項的和為,且.

(1)求的值;

(2)設(shè),證明:數(shù)列是等差數(shù)列;

(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當時,求函數(shù)在點處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當時,求證:對任意,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2)已知拋物線上一點,過點作拋物線的兩條弦,且,判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦“中國詩詞大賽”活動,某班派出甲乙兩名選手同時參加比賽. 大賽設(shè)有15個詩詞填空題,其中“唐詩”、“宋詞”和“毛澤東詩詞”各5個.每位選手從三類詩詞中各任選1個進行作答,3個全答對選手得3分,答對2個選手得2分,答對1個選手得1分,一個都沒答對選手得0分. 已知“唐詩”、“宋詞”和“毛澤東詩詞”中甲能答對的題目個數(shù)依次為5,4,3,乙能答對的題目個數(shù)依此為4,5,4,假設(shè)每人各題答對與否互不影響,甲乙兩人答對與否也互不影響

求:(1)甲乙兩人同時得到3分的概率;

2甲乙兩人得分之和的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.

(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線,又已知直線是參數(shù)),且直線與曲線交于兩點.

I)求曲線的直角坐標方程,并說明它是什么曲線;

II)設(shè)定點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求的值.

)求函數(shù)在區(qū)間上的最大值和最小值,及相應(yīng)的的值.

)求函數(shù)在區(qū)間的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案