13.直線l與拋物線y2=4x交于A,B兩點,且OA⊥OB,其中O為坐標原點.
(1)直線l是否過定點?證明你的結(jié)論;
(2)若$|{AB}|=4\sqrt{10}$,求△AOB的外接圓的方程.

分析 (1)設(shè)直線l:x=ty+m,代入拋物線y2=4x,利用韋達定理及向量數(shù)量積公式即可得到結(jié)論.
(2)根據(jù)弦長公式得到t=±1,再分別求出相對應(yīng)的△AOB的外接圓的方程.

解答 解:(1)直線l過定點(4,0).證明如下:
設(shè)直線l的方程為x=ty+m,A(x1,y1),B(x2,y2),則OA⊥OB?x1x2+y1y2=0
即$({1+{t^2}}){y_1}{y_2}+mt({{y_1}+{y_2}})+{m^2}=0$ ①
由$\left\{\begin{array}{l}{y^2}=4x\\ x=ty+m\end{array}\right.∴{y^2}-4ty-4m=0$,
∴y1+y2=4t,y1y2=-4m ②
由 ①②得m2-4m=0,
∴m=4
故直線l過定點(4,0).
 (2)由(1)知$|{AB}|=\sqrt{({1+{t^2}})[{{{({{y_1}+{y_2}})}^2}-4{y_1}{y_2}}]}=4\sqrt{({1+{t^2}})({{t^2}+4})}=4\sqrt{10}$,
∴t2=1,
①若t=1,則y1+y2=4,x1+x2=12,∴外接圓方程為(x-6)2+(y-2)2=40
②若t=-1,則y1+y2=-4,x1+x2=4,∴外接圓方程為(x-2)2+(y+2)2=8
故外接圓方程為(x-6)2+(y-2)2=40或(x-2)2+(y+2)2=8.

點評 本題考查直線與拋物線的位置關(guān)系,考查向量知識的運用,正確運用韋達定理是關(guān)鍵,解題時要注意弦長公式的合理運用,考查圓的方程,考查學(xué)生分析解決問題的能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點法”畫函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一個周期內(nèi)的圖象時,列表如下:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
(1)求函數(shù)f(x)的表達式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,且函數(shù)y=f(x)•g(x)在區(qū)間(0,m)上是單調(diào)函數(shù),求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在邊長為10(單位:m)的正方形鐵皮的四周切去四個全等的等腰三角形,再把它的四個角沿著虛線折起,做成一個正四棱錐的模型.設(shè)切去的等腰三角形的高為x m.問正四棱錐的體積V(x)何時最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線y2=8x,點Q是圓C:x2+y2+2x-8y+13=0上任意一點,記拋物線上任意一點到直線x=-2的距離為d,則|PQ|+d的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線y2=ax的準線方程是x=-1,焦點為F.
(1)求a的值;
(2)過點F作直線交拋物線于A(x,y),B(x,y)兩點,若x+x=6,求弦長AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線方程為y2=4x,直線l的方程為x-y+2=0,在拋物線上有一動點P到y(tǒng)軸的距離為d1,P到l的距離為d2,則d1+d2的最小值為( 。
A.$2\sqrt{3}-2$B.$\frac{3\sqrt{2}}{2}$-1C.2$\sqrt{2}$D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知直線l與拋物線y2=2x相交于A(x1,y1),B(x2,y2)兩點,與x軸相交于點M,若y1y2=-4,
(1)求:M點的坐標;
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線y2=4x的焦點為F,點A(3,m)是拋物線上一點,則|FA|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,P為拋物線C:y2=8x上一點,F(xiàn)為拋物線的焦點,M為拋物線準線l上一點,且MF⊥PF,線段MF與拋物線交于點N,若|PF|=8,則$\frac{|MN|}{|NF|}$=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2}{3}$$\sqrt{3}$D.$\frac{3}{2}$$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案