20.已知奇函數(shù)f(x)在[0,+∞)上是增函數(shù),若f(lnx)<0,則(  )
A.$\frac{1}{e}$<x<1或x>1B.1<x<eC.0<x<e或x>eD.0<x<1

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可.

解答 解:∵f(x)是定義R上的奇函數(shù),在[0,+∞)上為增函數(shù),
∴f(x)是(-∞,+∞)上為增函數(shù),
∵f(lnx)<0=f(0),
∴l(xiāng)nx<0,
∴0<x<1,
故選D.

點(diǎn)評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某企業(yè)的4名職工參加職業(yè)技能考核,每名職工均可從4個(gè)備選考核項(xiàng)目中任意抽取一個(gè)參加考核,則恰有一個(gè)項(xiàng)目未被抽中的概率是$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=-x2-3,g(x)=2xlnx-ax,且函數(shù)f(x)與g(x)在x=1處的切線平行.
(Ⅰ)求函數(shù)g(x)在(1,g(1))處的切線方程;
(Ⅱ)當(dāng)x>0時(shí),g(x)-f(x)≥0恒成立,求實(shí)數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的表面積為$10+2\sqrt{5}+6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$ρsin(θ+\frac{π}{6})=4$.
(Ⅰ)寫出曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(Ⅱ)若射線$θ=\frac{π}{3}$與曲線C交于O,A兩點(diǎn),與直線l交于B點(diǎn),射線$θ=\frac{11π}{6}$與曲線C交于O,P兩點(diǎn),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,三邊a,b,c的對角分別為A,B,C,若a2+b2=2018c2,則$\frac{2sinAsinBcosC}{{1-{{cos}^2}C}}$=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知命題P:對任意的x∈[1,2],x2-a≥0,命題Q:存在x∈R,x2+2ax+2-a=0,若命題“P且Q”是真命題,則實(shí)數(shù)a的取值范圍是a≤-2或a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點(diǎn)M(1,m)(m>1),若點(diǎn)N(x,y)在不等式組$\left\{\begin{array}{l}y≥x\\ y≤mx\\ x+y≤1\end{array}\right.$表示的平面區(qū)域內(nèi),且$\overrightarrow{OM}•\overrightarrow{ON}$(O為
坐標(biāo)原點(diǎn))的最大值為2,則m=$1+\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{e^x}{x}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案